Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 29(12): 3318-3330, 2023 06.
Article in English | MEDLINE | ID: mdl-37020174

ABSTRACT

Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.


Subject(s)
Anthozoa , Seaweed , Animals , Humans , Coral Reefs , Ecosystem , Seaweed/physiology , Anthozoa/physiology , Pacific Ocean
2.
J Environ Manage ; 321: 115959, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36007386

ABSTRACT

Freshwater species and their habitats, and transportation networks are at heightened risk from changing climate and are priorities for adaptation, with the sheer abundance and individuality of road-river structures complicating mitigation efforts. We present a new spatial dataset of road-river structures attributed as culverts, bridges, or fords, and use this along with data on gradient and stream order to estimate structure sensitivity and exposure in and out of special areas of conservation (SAC) and built-up areas to determine vulnerability to damage across river catchments in Wales, UK. We then assess hazard of flooding likelihood at the most vulnerable structures to determine those posing high risk of impact on roads and river-obligate species (fishes and mussels) whose persistence depends on aquatic habitat connectivity. Over 5% (624/11,680) of structures are high vulnerability and located where flooding hazard is highest, posing high risk of impact to roads and river-obligate species. We assess reliability of our approach through an on-ground survey in a river catchment supporting an SAC and more than 40% (n = 255) of high-risk structures, and show that of the subset surveyed >50% had obvious physical degradation, streambank erosion, and scouring. Our findings help us to better understand which structures pose high-risk of impact to river-obligate species and humans with increased flooding likelihood.


Subject(s)
Climate Change , Rivers , Animals , Conservation of Natural Resources , Ecosystem , Fishes , Floods , Humans , Reproducibility of Results
3.
Mar Pollut Bull ; 173(Pt B): 113135, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34801889

ABSTRACT

Crustose coralline algae (CCA) and other encrusting calcifiers drive carbonate production on coral reefs. However, little is known about the rates of growth and calcification of these organisms within degraded turbid reef systems. Here we deployed settlement cards (N = 764) across seven reefs in Singapore for two years to examine spatio-temporal variation in encrusting community composition and CCA carbonate production. Our results showed that CCA was the dominant encrusting taxa (63.7% ± 18.3SD) across reefs. CCA carbonate production rates (0.009-0.052 g cm-2 yr-1) were less than half of those reported for most Indo-Pacific reefs, but similar to other turbid reef systems. Highest CCA carbonate production rates were observed furthest from Singapore's main shipping port, due to a relative increase in CCA cover on the offshore reefs. Our results suggest that proximity to areas of high industrialisation and ship traffic may reduce the cover of encrusting calcifying organisms and CCA production rates which may have negative, long-term implications for the stabilisation of nearshore reefs in urbanised settings.


Subject(s)
Anthozoa , Animals , Calcification, Physiologic , Carbonates , Coral Reefs , Singapore
4.
Sci Adv ; 5(11): eaaw9976, 2019 11.
Article in English | MEDLINE | ID: mdl-31807697

ABSTRACT

Climate change can alter conditions that sustain food production and availability, with cascading consequences for food security and global economies. Here, we evaluate the vulnerability of societies to the simultaneous impacts of climate change on agriculture and marine fisheries at a global scale. Under a "business-as-usual" emission scenario, ~90% of the world's population-most of whom live in the most sensitive and least developed countries-are projected to be exposed to losses of food production in both sectors, while less than 3% would live in regions experiencing simultaneous productivity gains by 2100. Under a strong mitigation scenario comparable to achieving the Paris Agreement, most countries-including the most vulnerable and many of the largest CO2 producers-would experience concomitant net gains in agriculture and fisheries production. Reducing societies' vulnerability to future climate impacts requires prompt mitigation actions led by major CO2 emitters coupled with strategic adaptation within and across sectors.


Subject(s)
Acclimatization , Agriculture/economics , Climate Change , Developing Countries/economics , Fisheries/economics , Food Supply/economics
5.
Biol Lett ; 15(10): 20190409, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31573428

ABSTRACT

Non-consumptive fear effects are an important determinant of foraging decisions by consumers across a range of ecosystems. However, how fear effects associated with the presence of predators interact with those associated with habitat structure remain unclear. Here, we used predator fish models (Plectropomus leopardus) and experimental patches of the macroalga Sargassum ilicifolium of varying densities to investigate how predator- and habitat-associated fear effects influence herbivory on coral reefs. We found the removal of macroalgal biomass (i.e. herbivory) was shaped by the interaction between predator- and habitat-associated fear effects. Rates of macroalgal removal declined with increasing macroalgal density, likely due to increased visual occlusion by denser macroalgae patches and reduced ability of herbivorous fishes to detect the predators. The presence of the predator model reduced herbivory within low macroalgal density plots, but not within medium- and high-density macroalgal plots. Our results suggest that fear effects due to predator presence were greatest at low macroalgal density, yet these effects were lost at higher densities possibly due to greater predation risk associated with habitat structure and/or the inability of herbivorous fishes to detect the predator model.


Subject(s)
Coral Reefs , Herbivory , Animals , Ecosystem , Fear , Fishes , Predatory Behavior
6.
Ecol Appl ; 27(4): 1178-1189, 2017 06.
Article in English | MEDLINE | ID: mdl-28140527

ABSTRACT

Identifying the most sensitive indicators to changes in fishing pressure is important for accurately detecting impacts. Biomass is thought to be more sensitive than abundance and length, while the wariness of fishes is emerging as a new metric. Periodically harvested closures (PHCs) that involve the opening and closing of an area to fishing are the most common form of fisheries management in the western Pacific. The opening of PHCs to fishing provides a unique opportunity to compare the sensitivity of metrics, such as abundance, length, biomass and wariness, to changes in fishing pressure. Diver-operated stereo video (stereo-DOV) provides data on fish behavior (using a proxy for wariness, minimum approach distance) simultaneous to abundance and length estimates. We assessed the impact of PHC protection and harvesting on the abundance, length, biomass, and wariness of target species using stereo-DOVs. This allowed a comparison of the sensitivity of these metrics to changes in fishing pressure across four PHCs in Fiji, where spearfishing and fish drives are common. Before PHCs were opened to fishing they consistently decreased the wariness of targeted species but were less likely to increase abundance, length, or biomass. Pulse harvesting of PHCs resulted in a rapid increase in the wariness of fishes but inconsistent impacts across the other metrics. Our results suggest that fish wariness is the most sensitive indicator of fishing pressure, followed by biomass, length, and abundance. The collection of behavioral data simultaneously with abundance, length, and biomass estimates using stereo-DOVs offers a cost-effective indicator of protection or rapid increases in fishing pressure. Stereo-DOVs can rapidly provide large amounts of behavioral data from monitoring programs historically focused on estimating abundance and length of fishes, which is not feasible with visual methods.


Subject(s)
Ecology/methods , Fear , Fisheries , Fishes/physiology , Animals , Biomass , Body Size , Fiji , Population Density
7.
Proc Biol Sci ; 284(1847)2017 01 25.
Article in English | MEDLINE | ID: mdl-28123092

ABSTRACT

Climate change is one of the greatest threats to the long-term maintenance of coral-dominated tropical ecosystems, and has received considerable attention over the past two decades. Coral bleaching and associated mortality events, which are predicted to become more frequent and intense, can alter the balance of different elements that are responsible for coral reef growth and maintenance. The geomorphic impacts of coral mass mortality have received relatively little attention, particularly questions concerning temporal recovery of reef carbonate production and the factors that promote resilience of reef growth potential. Here, we track the biological carbonate budgets of inner Seychelles reefs from 1994 to 2014, spanning the 1998 global bleaching event when these reefs lost more than 90% of coral cover. All 21 reefs had positive budgets in 1994, but in 2005 budgets were predominantly negative. By 2014, carbonate budgets on seven reefs were comparable with 1994, but on all reefs where an ecological regime shift to macroalgal dominance occurred, budgets remained negative through 2014. Reefs with higher massive coral cover, lower macroalgae cover and lower excavating parrotfish biomass in 1994 were more likely to have positive budgets post-bleaching. If mortality of corals from the 2016 bleaching event is as severe as that of 1998, our predictions based on past trends would suggest that six of eight reefs with positive budgets in 2014 would still have positive budgets by 2030. Our results highlight that reef accretion and framework maintenance cannot be assumed from the ecological state alone, and that managers should focus on conserving aspects of coral reefs that support resilient carbonate budgets.


Subject(s)
Anthozoa/physiology , Carbonates/chemistry , Coral Reefs , Animals , Climate Change , Seychelles
8.
Sci Rep ; 5: 18289, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26669758

ABSTRACT

Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m(-2) yr(-1)). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr(-1)) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100.


Subject(s)
Anthozoa , Coral Reefs , Global Warming , Models, Biological , Animals , Humans , Indian Ocean
9.
PLoS One ; 9(7): e101204, 2014.
Article in English | MEDLINE | ID: mdl-24983747

ABSTRACT

Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future.


Subject(s)
Biodiversity , Coral Reefs , Animals , Australia
10.
Ecol Lett ; 16(2): 191-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23126388

ABSTRACT

Spillover of adult fish biomass is an expected benefit from no-take marine reserves to adjacent fisheries. Here, we show fisher-naïve behaviour in reef fishes also spills over from marine reserves, potentially increasing access to fishery benefits by making fishes more susceptible to spearguns. The distance at which two targeted families of fishes began to flee a potential fisher [flight initiation distance (FID)] was lower inside reserves than in fished areas, and this reduction extended outside reserve boundaries. Reduced FID persisted further outside reserves than increases in fish biomass. This finding could help increase stakeholder support for marine reserves and improve current models of spillover by informing estimates for spatial changes in catchability. Behavioural changes of fish could help explain differences between underwater visual census and catch data in quantifying the spatial extent of spillover from marine reserves, and should be considered in the management of adjacent fisheries.


Subject(s)
Conservation of Natural Resources , Fishes/physiology , Population Dynamics , Animals , Behavior, Animal , Biomass , Coral Reefs , Fisheries , Marine Biology , Models, Theoretical , Philippines
11.
Proc Natl Acad Sci U S A ; 109(14): 5219-22, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22431631

ABSTRACT

In an effort to deliver better outcomes for people and the ecosystems they depend on, many governments and civil society groups are engaging natural resource users in collaborative management arrangements (frequently called comanagement). However, there are few empirical studies demonstrating the social and institutional conditions conducive to successful comanagement outcomes, especially in small-scale fisheries. Here, we evaluate 42 comanagement arrangements across five countries and show that: (i) comanagement is largely successful at meeting social and ecological goals; (ii) comanagement tends to benefit wealthier resource users; (iii) resource overexploitation is most strongly influenced by market access and users' dependence on resources; and (iv) institutional characteristics strongly influence livelihood and compliance outcomes, yet have little effect on ecological conditions.


Subject(s)
Anthozoa , Conservation of Natural Resources , Ecosystem , Animals , Resource Allocation
12.
PLoS One ; 6(8): e22761, 2011.
Article in English | MEDLINE | ID: mdl-21853046

ABSTRACT

Prey flight decisions in response to predation risk are increasingly being considered in conservation and management decisions in the terrestrial realm, but are rarely considered in marine systems. This field-based study investigated how the behavioral response of coral reef fish families varied along a gradient of subsistence fishing pressure in Papua New Guinea. Specifically, we examined how fishing pressure was related to pre-flight behavior and flight initiation distance (FID), and whether FID was influenced by body size (centimeters total length), group size (including both con- and hetero-specific individuals), or life-history phase. Fishing pressure was positively associated with higher FID, but only in families that were primarily targeted by spear guns. Among these families, there were variable responses in FID; some families showed increased FID monotonically with fishing pressure, while others showed increased FID only at the highest levels of fishing pressure. Body size was more significant in varying FID at higher levels of fishing pressure. Although family-level differences in pre-flight behavior were reported, such behavior showed low concordance with fishing pressure. FID shows promise as a tool by which compliance and effectiveness of management of reef fisheries can be assessed.


Subject(s)
Behavior, Animal/physiology , Coral Reefs , Fishes/physiology , Human Activities , Animal Migration/physiology , Animals , Body Size/physiology , Fisheries , Fishes/anatomy & histology , Humans , Linear Models , Papua New Guinea , Pressure
13.
Conserv Biol ; 25(2): 341-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21129032

ABSTRACT

Customary management systems (i.e., management systems that limit the use of marine resources), such as rotational fisheries closures, can limit harvest of resources. Nevertheless, the explicit goals of customary management are often to influence fish behavior (in particular flight distance, i.e., distance at which an organism begins to flee an approaching threat), rather than fish abundance. We explored whether the flight distance of reef fishes targeted by local artisanal fishers differed between a customary closure and fished reefs. We also examined whether flight distance of these species affected fishing success and accuracy of underwater visual census (UVC) between customary closed areas and areas open to fishing. Several species demonstrated significant differences in flight distance between areas, indicating that fishing activity may increase flight distance. These relatively long flight distances mean that in fished areas most target species may stay out of the range of spear fishers. In addition, mean flight distances for all species both inside and outside the customary-closure area were substantially smaller than the observation distance of an observer conducting a belt-transect UVC (mean [SE]= 8.8 m [0.48]). For targeted species that showed little ability to evade spear fishers, customary closures may be a vital management technique. Our results show that customary closures can have a substantial, positive effect on resource availability and that conventional UVC techniques may be insensitive to changes in flight behavior of fishes associated with fishing. We argue that short, periodic openings of customary closures may allow the health of the fish community to be maintained and local fishers to effectively harvest fishes.


Subject(s)
Conservation of Natural Resources/methods , Escape Reaction , Fisheries , Fishes/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...