Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Neurotrauma Rep ; 5(1): 61-73, 2024.
Article in English | MEDLINE | ID: mdl-38288298

ABSTRACT

Chronic sleep/wake disturbances (SWDs) are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong SWDs. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in 4-month-old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. Sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at 3 months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Further, TBI mice showed extensive brain tissue loss and increased glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 levels in the hypothalamus and vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes post-TBI early in life.

2.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014315

ABSTRACT

Chronic sleep/wake disturbances are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong sleep/wake disturbances. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in four months old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. The sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at three months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Furthermore, TBI mice showed extensive brain tissue loss and increased GFAP and IBA1 levels in the hypothalamus and the vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes following TBI early in life.

3.
Free Neuropathol ; 3(9)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35494163

ABSTRACT

Background: Seeding of pathology related to Alzheimer's disease (AD) and Lewy body disease (LBD) by tissue homogenates or purified protein aggregates in various model systems has revealed prion-like properties of these disorders. Typically, these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could direct the evolution of amyloid-ß (Aß) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in susceptible mouse models. Methods: Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aß pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice. Results: We observed that lysates from the brains with AD (Aß+, tau+), AD/LBD (Aß+, tau+, αSyn+), or Pathological Aging (Aß+, tau-, αSyn-) efficiently seeded diffuse Aß deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aß deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level. Conclusions: These findings are consistent with the idea that diffuse Aß pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aß that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.

4.
Brain Res Bull ; 166: 54-63, 2021 01.
Article in English | MEDLINE | ID: mdl-33147520

ABSTRACT

Mouse models that replicate facets of human neurological diseases are often used at the pre-clinical stage to better understand the underlying mechanisms of a disease and test the target engagement of potential therapeutic interventions. We recently characterized a mouse model of childhood-onset parkinsonism-dystonia, a disease caused by a homozygous loss-of-function mutation in the SLC39A14 gene. The disease manifests itself phenotypically by impairments in locomotor behaviour and postural abnormalities. Our initial characterization of the model revealed that the Slc39a14-/- mice showed altered Mn homeostasis and compromised locomotor performance in vertical pole-descending, horizontal beam-traversing, and rotarod tests (Jenkitkasemwong et al., 2018). However, some of the mice also displayed torticollis and Straub tail. In this study, we investigated whether these postural abnormalities affected the performance in the above motility tests and consequently, biased and compromised the external validity of reported abnormal locomotor profiles. Our analyses showed that the Slc39a14-/- mice displaying torticollis and/or Straub tail had tests scores comparable to scores of their counterparts that never displayed these postural abnormalities. The z-score general index of performance revealed that the Slc39a14-/- model presents a complex pathological motor phenotype relevant to the complexity of phenotypes identified in childhood-onset parkinsonism-dystonia.


Subject(s)
Disease Models, Animal , Dystonic Disorders , Parkinson Disease , Torticollis/etiology , Animals , Cation Transport Proteins/deficiency , Mice , Mice, Knockout , Phenotype , Tail/abnormalities
5.
J Exp Med ; 216(11): 2479-2491, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31467037

ABSTRACT

Hypothalamic-pituitary-adrenal (HPA) axis dysfunction contributes to numerous human diseases and disorders. We developed a high-affinity monoclonal antibody, CTRND05, targeting corticotropin-releasing factor (CRF). In mice, CTRND05 blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. CTRND05 induces skeletal muscle hypertrophy and increases lean body mass, effects not previously reported with small-molecule HPA-targeting pharmacologic agents. Multiorgan transcriptomics demonstrates broad HPA axis target engagement through altering levels of known HPA-responsive transcripts such as Fkbp5 and Myostatin and reveals novel HPA-responsive pathways such as the Apelin-Apelin receptor system. These studies demonstrate the therapeutic potential of CTRND05 as a suppressor of the HPA axis and serve as an exemplar of a potentially broader approach to target neuropeptides with immunotherapies, as both pharmacologic tools and novel therapeutics.


Subject(s)
Antibodies, Monoclonal/pharmacology , Corticotropin-Releasing Hormone/antagonists & inhibitors , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Stress, Physiological/drug effects , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Corticosterone/immunology , Corticosterone/metabolism , Corticotropin-Releasing Hormone/immunology , Gene Expression Profiling/methods , Humans , Hypothalamo-Hypophyseal System/immunology , Hypothalamo-Hypophyseal System/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , Pituitary-Adrenal System/immunology , Pituitary-Adrenal System/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Stress, Physiological/immunology
6.
Hum Mol Genet ; 28(19): 3255-3269, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31261380

ABSTRACT

Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.


Subject(s)
Central Nervous System/metabolism , Mutation , Tauopathies/genetics , tau Proteins/genetics , tau Proteins/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/psychology , Humans , Male , Mice , Mice, Transgenic , Phosphorylation , Pick Disease of the Brain/genetics , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/psychology , Tauopathies/metabolism , Tauopathies/psychology
7.
J Exp Med ; 215(9): 2247-2264, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30158114

ABSTRACT

There is considerable interest in harnessing innate immunity to treat Alzheimer's disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid ß (Aß) accumulation in a mouse model of Alzheimer-type Aß pathology. sTLR5Fc binds to oligomeric and fibrillar Aß with high affinity, forms complexes with Aß, and blocks Aß toxicity. Oligomeric and fibrillar Aß modulates flagellin-mediated activation of human TLR5 but does not, by itself, activate TLR5 signaling. Genetic analysis shows that rare protein coding variants in human TLR5 may be associated with a reduced risk of AD. Further, transcriptome analysis shows altered TLR gene expression in human AD. Collectively, our data suggest that TLR5 decoy receptor-based biologics represent a novel and safe Aß-selective class of biotherapy in AD.


Subject(s)
Alzheimer Disease , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Toll-Like Receptor 5/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/immunology , Animals , Female , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology
8.
Neurobiol Aging ; 65: 140-148, 2018 05.
Article in English | MEDLINE | ID: mdl-29477894

ABSTRACT

Parkinson's disease manifests as a progressive movement disorder with underlying degeneration of dopaminergic neurons in the substantia nigra, consequent depletion of dopamine levels, and the accumulation of Lewy bodies in the brain. Because α-synuclein (α-Syn) protein is the major component of Lewy bodies, mouse models expressing wild-type or mutant SNCA/α-Syn genes provide a useful tool to investigate canonical characteristics of the disease. We evaluated a mouse model (denoted M20) that expresses human wild-type SNCA gene. The M20 mice showed abnormal locomotor behavior and reduced species-specific home cage activity. However, the direction of behavioral changes was task specific. In comparison with their control littermates, the M20 mice exhibited shorter grip endurance, and longer times to traverse elevated beams, but they descended the vertical pole faster and stayed longer on the accelerated rod than the control mice. The M20 mice were also impaired in burrowing and nest building activities. These results indicate a possible role of α-Syn in motor coordination and the motivation to perform species-specific behaviors in the presymptomatic model of synucleinopathy.


Subject(s)
Behavior, Animal/physiology , Locomotion/genetics , Locomotion/physiology , Mutation , Parkinson Disease/genetics , Parkinson Disease/psychology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Animals , Disease Models, Animal , Female , Gene Expression , Homing Behavior , Humans , Lewy Bodies/metabolism , Male , Mice, Transgenic , Parkinson Disease/physiopathology , Psychomotor Performance/physiology
9.
Proc Natl Acad Sci U S A ; 115(8): E1769-E1778, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29437953

ABSTRACT

Solute carrier family 39, member 14 (SLC39A14) is a transmembrane transporter that can mediate the cellular uptake of zinc, iron, and manganese (Mn). Studies of Slc39a14 knockout (Slc39a14-/-) mice have documented that SLC39A14 is required for systemic growth, hepatic zinc uptake during inflammation, and iron loading of the liver in iron overload. The normal physiological roles of SLC39A14, however, remain incompletely characterized. Here, we report that Slc39a14-/- mice spontaneously display dramatic alterations in tissue Mn concentrations, suggesting that Mn is a main physiological substrate for SLC39A14. Specifically, Slc39a14-/- mice have abnormally low Mn levels in the liver coupled with markedly elevated Mn concentrations in blood and most other organs, especially the brain and bone. Radiotracer studies using 54Mn reveal that Slc39a14-/- mice have impaired Mn uptake by the liver and pancreas and reduced gastrointestinal Mn excretion. In the brain of Slc39a14-/- mice, Mn accumulated in the pons and basal ganglia, including the globus pallidus, a region susceptible to Mn-related neurotoxicity. Brain Mn accumulation in Slc39a14-/- mice was associated with locomotor impairments, as assessed by various behavioral tests. Although a low-Mn diet started at weaning was able to reverse brain Mn accumulation in Slc39a14-/- mice, it did not correct their motor deficits. We conclude that SLC39A14 is essential for efficient Mn uptake by the liver and pancreas, and its deficiency results in impaired Mn excretion and accumulation of the metal in other tissues. The inability of Mn depletion to correct the motor deficits in Slc39a14-/- mice suggests that the motor impairments represent lasting effects of early-life Mn exposure.


Subject(s)
Cation Transport Proteins/metabolism , Manganese/metabolism , Motor Disorders/metabolism , Animal Feed/analysis , Animals , Biological Transport , Brain/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Diet , Hep G2 Cells , Homeostasis , Humans , Manganese/administration & dosage , Mice , Mice, Knockout , Motor Disorders/genetics , Radioisotopes/metabolism
10.
J Exp Med ; 215(1): 283-301, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29208777

ABSTRACT

Processing of amyloid-ß (Aß) precursor protein (APP) by γ-secretase produces multiple species of Aß: Aß40, short Aß peptides (Aß37-39), and longer Aß peptides (Aß42-43). γ-Secretase modulators, a class of Alzheimer's disease therapeutics, reduce production of the pathogenic Aß42 but increase the relative abundance of short Aß peptides. To evaluate the pathological relevance of these peptides, we expressed Aß36-40 and Aß42-43 in Drosophila melanogaster to evaluate inherent toxicity and potential modulatory effects on Aß42 toxicity. In contrast to Aß42, the short Aß peptides were not toxic and, when coexpressed with Aß42, were protective in a dose-dependent fashion. In parallel, we explored the effects of recombinant adeno-associated virus-mediated expression of Aß38 and Aß40 in mice. When expressed in nontransgenic mice at levels sufficient to drive Aß42 deposition, Aß38 and Aß40 did not deposit or cause behavioral alterations. These studies indicate that treatments that lower Aß42 by raising the levels of short Aß peptides could attenuate the toxic effects of Aß42.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Peptide Fragments/metabolism , Peptide Fragments/toxicity , Amyloid/genetics , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Drosophila melanogaster , Eye/metabolism , Eye/pathology , Eye/ultrastructure , Female , Locomotion , Mice , Mice, Transgenic , Peptide Fragments/chemistry , Peptide Fragments/genetics , Phenotype , Protein Aggregates , Protein Aggregation, Pathological/metabolism
11.
Mol Neurodegener ; 12(1): 72, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28978354

ABSTRACT

BACKGROUND: MAPT mutations cause neurodegenerative diseases such as frontotemporal dementia but, strikingly, patients with the same mutation may have different clinical phenotypes. METHODS: Given heterogeneities observed in a transgenic (Tg) mouse line expressing low levels of human (2 N, 4R) P301L Tau, we backcrossed founder stocks of mice to C57BL/6Tac, 129/SvEvTac and FVB/NJ inbred backgrounds to discern the role of genetic versus environmental effects on disease-related phenotypes. RESULTS: Three inbred derivatives of a TgTauP301L founder line had similar quality and steady-state quantity of Tau production, accumulation of abnormally phosphorylated 64-68 kDa Tau species from 90 days of age onwards and neuronal loss in aged Tg mice. Variegation was not seen in the pattern of transgene expression and seeding properties in a fluorescence-based cellular assay indicated a single "strain" of misfolded Tau. However, in other regards, the aged Tg mice were heterogeneous; there was incomplete penetrance for Tau deposition despite maintained transgene expression in aged animals and, for animals with Tau deposits, distinctions were noted even within each subline. Three classes of rostral deposition in the cortex, hippocampus and striatum accounted for 75% of pathology-positive mice yet the mean ages of mice scored as class I, II or III were not significantly different and, hence, did not fit with a predictable progression from one class to another defined by chronological age. Two other patterns of Tau deposition designated as classes IV and V, occurred in caudal structures. Other pathology-positive Tg mice of similar age not falling within classes I-V presented with focal accumulations in additional caudal neuroanatomical areas including the locus coeruleus. Electron microscopy revealed that brains of Classes I, II and IV animals all exhibit straight filaments, but with coiled filaments and occasional twisted filaments apparent in Class I. Most strikingly, Class I, II and IV animals presented with distinct western blot signatures after trypsin digestion of sarkosyl-insoluble Tau. CONCLUSIONS: Qualitative variations in the neuroanatomy of Tau deposition in genetically constrained slow models of primary Tauopathy establish that non-synchronous, focal events contribute to the pathogenic process. Phenotypic diversity in these models suggests a potential parallel to the phenotypic variation seen in P301L patients.


Subject(s)
Brain/pathology , Tauopathies/pathology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Tauopathies/genetics , tau Proteins/genetics
12.
Methods Mol Biol ; 1438: 311-47, 2016.
Article in English | MEDLINE | ID: mdl-27150098

ABSTRACT

The major symptom of Alzheimer's disease is dementia progressing with age. Its clinical diagnosis is preceded by a long prodromal period of brain pathology that encompasses both formation of extracellular amyloid and intraneuronal tau deposits in the brain and widespread neuronal death. At present, familial cases of dementia provide the most promising foundation for modeling neurodegenerative tauopathies, a group of heterogeneous disorders characterized by prominent intracellular accumulation of hyperphosphorylated tau protein. In this chapter, we describe major behavioral hallmarks of tauopathies, briefly outline the genetics underlying familial cases, and discuss the arising implications for modeling the disease in transgenic mouse systems. The selection of tests performed to evaluate the phenotype of a model should be guided by the key behavioral hallmarks that characterize human disorder and their homology to mouse cognitive systems. We attempt to provide general guidelines and establish criteria for modeling dementia in a mouse; however, interpretations of obtained results should avoid a reductionist "one gene, one disease" explanation of model characteristics. Rather, the focus should be directed to the question of how the mouse genome can cope with the over-expression of the protein coded by transgene(s). While each model is valuable within its own constraints and the experiments performed are guided by specific hypotheses, we seek to expand upon their methodology by offering guidance spanning from issues of mouse husbandry to choices of behavioral tests and routes of drug administration that might increase the external validity of studies and consequently optimize the translational aspect of preclinical research.


Subject(s)
Tauopathies/pathology , Tauopathies/psychology , Animals , Behavior, Animal , Brain/pathology , Disease Models, Animal , Drug Administration Routes , Drug Evaluation, Preclinical , Guidelines as Topic , Humans , Mice , Mice, Transgenic , Neuropsychological Tests
13.
PLoS One ; 11(2): e0149410, 2016.
Article in English | MEDLINE | ID: mdl-26894278

ABSTRACT

Pituitary Prolactin (PRL) and Growth Hormone (GH) are separately controlled and sub-serve different purposes. Surprisingly, we demonstrate that extra-pituitary expression in the adult mammalian central nervous system (CNS) is coordinated at mRNA and protein levels. However this was not a uniform effect within populations, such that wide inter-individual variation was superimposed on coordinate PRL/GH expression. Up to 44% of individuals in healthy cohorts of mice and rats showed protein levels above the norm and coordinated expression of PRL and GH transcripts above baseline occurred in the amygdala, frontal lobe and hippocampus of 10% of human subjects. High levels of PRL and GH present in post mortem tissue were often presaged by altered responses in fear conditioning and stress induced hyperthermia behavioral tests. Our data define a common phenotype polymorphism in healthy mammalian brains, and, given the pleiotropic effects known for circulating PRL and GH, further consequences of coordinated CNS over-expression may await discovery.


Subject(s)
Brain/metabolism , Growth Hormone/biosynthesis , Phenotype , Prolactin/biosynthesis , Animals , Female , Gene Expression , Growth Hormone/blood , Growth Hormone/genetics , Humans , Male , Mice , Prolactin/blood , Prolactin/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
14.
PLoS One ; 10(11): e0142144, 2015.
Article in English | MEDLINE | ID: mdl-26528920

ABSTRACT

BACKGROUND: Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of different disease-causing mutations on the localization of Matrin 3 within cells. RESULTS: Using CHO and human H4 neuroglioma cell models, we find that ALS/myopathy mutations do not produce profound changes in the localization of the protein. Although we did observe variable levels of Matrin 3 in the cytoplasm either by immunostaining or visualization of fluorescently-tagged protein, the majority of cells expressing either wild-type (WT) or mutant Matrin 3 showed nuclear localization of the protein. When cytoplasmic immunostaining, or fusion protein fluorescence, was seen in the cytoplasm, the stronger intensity of staining or fluorescence was usually evident in the nucleus. In ~80% of cells treated with sodium arsenite (Ars) to induce cytoplasmic stress granules, the nuclear localization of WT and F115C mutant Matrin 3 was not disturbed. Notably, over-expression of mutant Matrin 3 did not induce the formation of obvious large inclusion-like structures in either the cytoplasm or nucleus. CONCLUSIONS: Our findings indicate that mutations in Matrin 3 that are associated with ALS and myopathy do not dramatically alter the normal localization of the protein or readily induce inclusion formation.


Subject(s)
Amyotrophic Lateral Sclerosis , Cytoplasm , Distal Myopathies , Inclusion Bodies , Mutation , Nuclear Matrix-Associated Proteins , RNA-Binding Proteins , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , CHO Cells , Cricetulus , Cytoplasm/genetics , Cytoplasm/metabolism , Distal Myopathies/genetics , Distal Myopathies/metabolism , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Protein Transport/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
15.
Neurobiol Aging ; 36(9): 2519-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26089165

ABSTRACT

Alzheimer's disease (AD) is characterized by dysfunction in cognitive and noncognitive domains with clinical diagnosis based on multiple neuropsychological tests. Here, we evaluated cognitive and noncognitive behaviors in 2 age cohorts (8 and 14 months at the start of the study) of APPSwe/PS1dE9 transgenic mice that model AD-like amyloidosis. We used a battery of tests that included fear-conditioned context and tone memories, swimming activity, and orientation to a proximal cue in a visible platform water maze test and burrowing and nest building activity. To compare the performance of mice across all tests, we used z-score normalization of data. The analyses revealed that the behavior of the transgenic mice was significantly compromised in cognitive as well as in noncognitive domains. Combining scores across multiple behavioral tests produced an integrated index characterizing the overall phenotypic abnormality in this model of AD-like amyloidosis. Assessing multiple behavioral domains provides a broader view of the breadth of impairments in multiple behavioral systems. Greater implementation of such approaches could enable reliable and clinically predictive evaluation of therapeutics in mouse models of amyloidosis.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/pathology , Mental Disorders/etiology , Mental Disorders/pathology , Age Factors , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Body Weight/genetics , Conditioning, Psychological/physiology , Disease Models, Animal , Exploratory Behavior/physiology , Humans , Maze Learning , Memory Disorders/etiology , Mice , Mice, Transgenic , Mutation/genetics , Nesting Behavior/physiology , Presenilin-1/genetics , Time Factors
16.
J Neurochem ; 133(3): 452-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25557022

ABSTRACT

There has been great interest in enhancing endogenous protein maintenance pathways such as the heat-shock chaperone response, as it is postulated that enhancing clearance of misfolded proteins could have beneficial disease modifying effects in amyotrophic lateral sclerosis and other neurodegenerative disorders. In cultured cell models of mutant SOD1 aggregation, co-expression of αB-crystallin (αB-crys) has been shown to inhibit the formation of detergent-insoluble forms of mutant protein. Here, we describe the generation of a new line of transgenic mice that express αB-crys at > 6-fold the normal level in spinal cord, with robust increases in immunoreactivity throughout the spinal cord grey matter and, specifically, in spinal motor neurons. Surprisingly, spinal cords of mice expressing αB-crys alone contained 20% more motor neurons per section than littermate controls. Raising αB-crys by these levels in mice transgenic for either G93A or L126Z mutant SOD1 had no effect on the age at which paralysis developed. In the G93A mice, which showed the most robust degree of motor neuron loss, the number of these cells declined by the same proportion as in mice expressing the mutant SOD1 alone. In paralyzed bigenic mice, the levels of detergent-insoluble, misfolded, mutant SOD1 were similar to those of mice expressing mutant SOD1 alone. These findings indicate that raising the levels of αB-crys in spinal motor neurons by 6-fold does not produce the therapeutic effects predicted by cell culture models of mutant SOD1 aggregation. Enhancing the protein chaperone function may present a therapeutic approach to amyotrophic lateral sclerosis caused by mutations in SOD1, and other neurodegenerative disorders characterized by cytosolic protein aggregation. Previous studies in cell models suggested that the chaperone known as αB-crystallin (αB-crys) can prevent mutant SOD1 aggregation. We report that transgenic expression of αB-crys at > 6-fold the normal level in spinal cords of mice expressing mutant SOD1 produces no therapeutic benefit.


Subject(s)
Motor Neurons/metabolism , Mutant Proteins/biosynthesis , Paralysis/metabolism , Protein Aggregation, Pathological/metabolism , Superoxide Dismutase , alpha-Crystallin B Chain/biosynthesis , Animals , Humans , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Mutant Proteins/genetics , Paralysis/genetics , Paralysis/prevention & control , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/prevention & control , Spinal Cord/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , alpha-Crystallin B Chain/genetics
17.
Neuron ; 85(3): 519-33, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25619653

ABSTRACT

Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimer's disease. To explore how anti-inflammatory cytokine signaling affects Aß pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aß accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10-expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely because of direct interaction with aggregated Aß in the IL-10-expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aß phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aß proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis.


Subject(s)
Amyloid beta-Protein Precursor , Cognition Disorders/metabolism , Immunoproteins/biosynthesis , Interleukin-10/biosynthesis , Plaque, Amyloid/metabolism , Proteostasis Deficiencies/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Animals, Newborn , Cells, Cultured , Cognition Disorders/immunology , HEK293 Cells , Humans , Mice , Mice, Transgenic , Plaque, Amyloid/immunology , Proteostasis Deficiencies/immunology
18.
Mol Ther ; 23(1): 53-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25228069

ABSTRACT

The architecture of the spinal cord makes efficient delivery of recombinant adeno-associated virus (rAAV) vectors throughout the neuraxis challenging. We describe a paradigm in which small amounts of virus delivered intraspinally to newborn mice result in robust rAAV-mediated transgene expression in the spinal cord. We compared the efficacy of rAAV2/1, 2/5, 2/8, and 2/9 encoding EGFP delivered to the hindlimb muscle (IM), cisterna magna (ICM), or lumbar spinal cord (IS) of neonatal pups. IS injection of all four capsids resulted in robust transduction of the spinal cord with rAAV2/5, 2/8, and 2/9 vectors appearing to be transported to brain. ICM injection resulted in widespread expression of EGFP in the brain, and upper spinal cord. IM injection resulted in robust muscle expression, with only rAAV2/8 and 2/9 transducing spinal motor and sensory neurons. As proof of concept, we use the IS paradigm to express murine Interleukin (IL)-10 in the spinal cord of the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. We show that expression of IL-10 in the spinal axis of SOD1-G93A mice altered the immune milieu and significantly prolonged survival. These data establish an efficient paradigm for somatic transgene delivery of therapeutic biologics to the spinal cord of mice.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Brain/metabolism , Dependovirus/genetics , Genetic Therapy/methods , Spinal Cord/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Newborn , Brain/pathology , Capsid/metabolism , Cisterna Magna/metabolism , Cisterna Magna/pathology , Dependovirus/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Injections, Spinal , Interleukin-10/genetics , Interleukin-10/metabolism , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Spinal Cord/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Transduction, Genetic
19.
J Huntingtons Dis ; 3(1): 73-86, 2014.
Article in English | MEDLINE | ID: mdl-25062766

ABSTRACT

BACKGROUND: N-terminal cleavage products of mutant huntingtin (htt) generate pathologic neuronal inclusion bodies. The precise length of the htt fragment, termed Cp-A/1, that produces HD pathologic inclusions is unknown. OBJECTIVE: We sought to elucidate the protein sequence elements within the N-terminus of htt that mediate its proteolysis based on a model in which engineered htt fragments terminating at residue 171 are cleaved to produce Cp-A/1 fragments. METHODS: We expressed htt N171 cDNAs harboring a series of experimental mutations in the presumptive cleavage site that generates Cp-A/1 in cells to identify cleavage resistant mutants of htt N171. One of these constructs was expressed in mice, followed by analysis using immunoblots of brain extracts and immunohistochemistry of transgenic mouse brain tissues. RESULTS: Using the HEK293 cell model, mutagenesis studies mapped the cleavage site in htt N171 to sequences between residues 105-114. Mutation of 8 positively charged residues (H, K, R) located between residues 88 and 114 to alanine to neutralize the charge also blocked the generation of Cp-A/1 like fragments. Transgenic mice expressing this latter construct, termed N171-82Q-N8, developed phenotypes similar to previously characterized N171-82Q transgenic mice, including rotarod deficiency, intranuclear inclusions, and premature death. Surprisingly, the N171-82Q-N8 protein was efficiently cleaved in vivo to produce Cp-A/1 fragments that accumulated as insoluble inclusions. CONCLUSION: Mutagenesis of htt to identify critical amino acids that direct its cleavage predicted a role for charged residues in the sequence flanking the presumptive cleavage site. However, the role for these residues could not be confirmed in vivo. The basis for the discrepancy between predicted outcomes in HEK293 cells and the mouse models remain unresolved, but the data provide another validation of the hypothesis that Cp-A/1 fragments of mutant htt can induce HD-like phenotypes.


Subject(s)
Huntington Disease/metabolism , Inclusion Bodies/metabolism , Mutant Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Peptide Fragments/metabolism , Animals , Brain/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Huntingtin Protein , Mice , Mice, Transgenic , Mutagenesis , Phenotype
20.
Comp Med ; 64(1): 4-12, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24672832

ABSTRACT

Fear-conditioning testing paradigms have been used to study differences in memory formation between inbred mouse strains, including numerous mouse models of human diseases. In this study, we characterized the conditioned fear memory of 3 inbred strains: C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl, obtained from Charles River Laboratories. We used 2 training paradigms: delay conditioning, in which an unconditional stimulus coterminates with the presentation of a conditional stimulus, and trace conditioning, in which the conditional and unconditional stimuli are separated by a trace interval. In each paradigm, we evaluated the recent (3 d) and remote (25 d) memory of the mice by using a longitudinal design. Our results showed that both C57BL/6NCrl and 129S2/SvPasCrl mice developed strong and long-lasting context and tone memories in both paradigms, but FVB/NCrl mice showed a weaker but nevertheless consistent tone memory after delay training. Tone memory in the FVB strain was stronger in male than female mice. The remote tone memory of 129S2/SvPasCrl mice diminished after delay training but was stable and stronger than that of C57BL/6NCrl mice after trace training. In conclusion, both C57BL/6NCrl and 129S2/SvPasCrl mice showed reliable and long-lasting fear memory after delay or trace training, with 129 mice showing particularly strong tone memory after trace conditioning. The FVB/NCrl strain, especially male mice, showed reliable tone fear memory after delay training. Our findings confirm that both C57BL/6NCrl and 129S2/SvPasCrl mice develop strong context and tone memory in delay and trace fear-conditioning paradigms.


Subject(s)
Behavior, Animal , Conditioning, Psychological , Fear , Memory , Mice, 129 Strain/psychology , Mice, Inbred C57BL/psychology , Acoustic Stimulation/psychology , Animals , Association Learning , Auditory Perception , Electroshock/psychology , Female , Male , Mice , Models, Animal , Pain Perception , Sex Factors , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL