Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 38(7): 110352, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172152

ABSTRACT

Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.


Subject(s)
Chromatin/metabolism , Histone Deacetylase 1/metabolism , Neurons/metabolism , Animals , Calcium Signaling , Chromatin/ultrastructure , Chromosomes, Mammalian/metabolism , Energy Metabolism , Hippocampus/cytology , Long-Term Potentiation , Mice, Inbred C57BL , Rats, Wistar , Transcription, Genetic
2.
Nature ; 524(7566): 485-8, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26245374

ABSTRACT

Most of the mitochondrial proteome originates from nuclear genes and is transported into the mitochondria after synthesis in the cytosol. Complex machineries which maintain the specificity of protein import and sorting include the TIM23 translocase responsible for the transfer of precursor proteins into the matrix, and the mitochondrial intermembrane space import and assembly (MIA) machinery required for the biogenesis of intermembrane space proteins. Dysfunction of mitochondrial protein sorting pathways results in diminishing specific substrate proteins, followed by systemic pathology of the organelle and organismal death. The cellular responses caused by accumulation of mitochondrial precursor proteins in the cytosol are mainly unknown. Here we present a comprehensive picture of the changes in the cellular transcriptome and proteome in response to a mitochondrial import defect and precursor over-accumulation stress. Pathways were identified that protect the cell against mitochondrial biogenesis defects by inhibiting protein synthesis and by activation of the proteasome, a major machine for cellular protein clearance. Proteasomal activity is modulated in proportion to the quantity of mislocalized mitochondrial precursor proteins in the cytosol. We propose that this type of unfolded protein response activated by mistargeting of proteins (UPRam) is beneficial for the cells. UPRam provides a means for buffering the consequences of physiological slowdown in mitochondrial protein import and for counteracting pathologies that are caused or contributed by mitochondrial dysfunction.


Subject(s)
Cytosol/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Precursors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Mitochondria/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis , Protein Transport/genetics , Proteome/genetics , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological/genetics , Transcriptome , Unfolded Protein Response/genetics
3.
J Biol Chem ; 290(39): 23603-15, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26260790

ABSTRACT

Endurance exercise training induces substantial adaptive cardiac modifications such as left ventricular hypertrophy (LVH). Simultaneously to the development of LVH, adipose tissue (AT) lipolysis becomes elevated upon endurance training to cope with enhanced energy demands. In this study, we investigated the impact of adipose tissue lipolysis on the development of exercise-induced cardiac hypertrophy. Mice deficient for adipose triglyceride lipase (Atgl) in AT (atATGL-KO) were challenged with chronic treadmill running. Exercise-induced AT lipolytic activity was significantly reduced in atATGL-KO mice accompanied by the absence of a plasma fatty acid (FA) increase. These processes were directly associated with a prominent attenuation of myocardial FA uptake in atATGL-KO and a significant reduction of the cardiac hypertrophic response to exercise. FA serum profiling revealed palmitoleic acid (C16:1n7) as a new molecular co-mediator of exercise-induced cardiac hypertrophy by inducing nonproliferative cardiomyocyte growth. In parallel, serum FA analysis and echocardiography were performed in 25 endurance athletes. In consonance, the serum C16:1n7 palmitoleate level exhibited a significantly positive correlation with diastolic interventricular septum thickness in those athletes. No correlation existed between linoleic acid (18:2n6) and diastolic interventricular septum thickness. Collectively, our data provide the first evidence that adipose tissue lipolysis directly promotes the development of exercise-induced cardiac hypertrophy involving the lipokine C16:1n7 palmitoleate as a molecular co-mediator. The identification of a lipokine involved in physiological cardiac growth may help to develop future lipid-based therapies for pathological LVH or heart failure.


Subject(s)
Adipose Tissue/metabolism , Cardiomegaly/etiology , Fatty Acids, Monounsaturated/metabolism , Lipolysis , Physical Conditioning, Animal , Animals , Cardiomegaly/metabolism , Cell Line , Mice , Mice, Knockout
4.
Neurochem Res ; 35(5): 743-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20143157

ABSTRACT

Neurons are known to accumulate L-carnitine--a compound necessary for transfer of acyl moieties through biological membranes, apart from very low beta-oxidation of fatty acids in adult brain. Present study demonstrates expression of octn2 and octn3 genes coding high affinity carnitine transporters, as well as presence of both proteins in neurons obtained from suckling and adult rats, and also in mouse transformed neural cells. Measurements of carnitine transport show activity of both transporters in neural cells, pointing to their importance in physiological processes other than beta-oxidation.


Subject(s)
Neurons/metabolism , Organic Cation Transport Proteins/biosynthesis , Animals , Animals, Newborn , Carnitine/metabolism , Cell Line, Tumor , Mice , Neuroblastoma/metabolism , Rats , Rats, Wistar , Solute Carrier Family 22 Member 5
5.
Int J Biochem Cell Biol ; 41(12): 2599-609, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19735737

ABSTRACT

In the brain beta-oxidation, which takes place in astrocytes, is not a major process of energy supply. Astrocytes synthesize important lipid metabolites, mainly due to the processes taking place in peroxisomes. One of the compounds necessary in the process of mitochondrial beta-oxidation and export of acyl moieties from peroxisomes is l-carnitine. Two Na-dependent plasma membrane carnitine transporters were shown previously to be present in astrocytes: a low affinity amino acid transporter B(0,+) and a high affinity cation/carnitine transporter OCTN2. The expression of OCTN2 is known to increase in peripheral tissues upon the stimulation of peroxisome proliferators-activator receptor alpha (PPARalpha), a nuclear receptor known to up-regulate several enzymes involved in fatty acid metabolism. The present study was focused on another high affinity carnitine transporter-OCTN3, its presence, regulation and activity in astrocytes. Experiments using the techniques of real-time PCR, Western blot and immunocytochemistry analysis demonstrated the expression of octn3 in rat astrocytes and, out of two rat sequences ascribed as similar to mouse OCTN3, XM_001073573 was found in these cells. PPARalpha activator-2-[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY-14,643) stimulated by 50% expression of octn3, while, on the contrary to peripheral tissues, it did not change the expression of octn2. This observation was correlated with an increased Na-independent activity of carnitine transport. Analysis by transmission electron microscopy showed an augmented intracellular localization of OCTN3 upon PPARalpha stimulation, mainly in peroxisomes, indicating a physiological role of OCTN3 as peroxisomal membrane transporter. These observations point to an important role of OCTN3 in peroxisomal fatty acid metabolism in astrocytes.


Subject(s)
Astrocytes/metabolism , Organic Cation Transport Proteins/biosynthesis , PPAR alpha/metabolism , Animals , Astrocytes/drug effects , Carnitine/metabolism , Microscopy, Electron , Organic Cation Transport Proteins/genetics , Peroxisome Proliferators/pharmacology , Peroxisomes/metabolism , Protein Transport/drug effects , Pyrimidines/pharmacology , Rats , Rats, Wistar
6.
J Neurochem ; 104(1): 113-23, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17995936

ABSTRACT

Carnitine beta-hydroxy-gamma-(trimethylammonio)butyrate - a compound necessary in the peripheral tissues for a transfer of fatty acids for their oxidation within the cell, accumulates in the brain despite low beta-oxidation in this organ. In order to enter the brain, carnitine has to cross the blood-brain barrier formed by capillary endothelial cells which are in close interaction with astrocytes. Previous studies, demonstrating expression of mRNA coding two carnitine transporters - organic cation/carnitine transporter 2 (OCTN2) and B(0,+) in endothelial cells, did not give any information on carnitine transporters polarity in endothelium. Therefore more detailed experiments were performed on expression and localization of a high affinity carnitine transporter OCTN2 in an in vitro model of the blood-brain barrier by real-time PCR, western blot analysis, and immunocytochemistry. The amount of mRNA was comparable in endothelial cells and kidney, when referred to house-keeping genes, it was, however, significantly lower in astrocytes. Polarity of OCTN2 localization was further studied in an in vitro model of the blood-brain barrier with use of anti-OCTN2 antibodies. Z-axis analysis of the confocal microscope pictures of endothelial cells, with anti-P-glycoprotein antibodies as the marker of apical membrane, showed OCTN2 localization at the basolateral membrane and in the cytoplasmic region in the vicinity of nuclei. Localization of OCTN2 suggest that carnitine can be also transported from the brain, playing an important role in removal of certain acyl esters.


Subject(s)
Astrocytes/metabolism , Blood-Brain Barrier/cytology , Blood-Brain Barrier/physiology , Organic Cation Transport Proteins/metabolism , Animals , Astrocytes/ultrastructure , Brain , Cells, Cultured , Gene Expression/physiology , Organic Cation Transport Proteins/genetics , RNA, Messenger/biosynthesis , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Solute Carrier Family 22 Member 5 , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...