Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 611(7937): 787-793, 2022 11.
Article in English | MEDLINE | ID: mdl-36323781

ABSTRACT

Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.


Subject(s)
Immunity, Innate , Intestinal Mucosa , Lymphocytes , Neuropeptides , Animals , Humans , Mice , Cytokines/immunology , Cytokines/metabolism , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/parasitology , Inflammation/pathology , Lymphocytes/immunology , Neuropeptides/metabolism , Neuropeptides/physiology , Amphiregulin , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology
2.
Nature ; 611(7937): 794-800, 2022 11.
Article in English | MEDLINE | ID: mdl-36323785

ABSTRACT

Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.


Subject(s)
Immune System , Immunity, Innate , Lymphocytes , Animals , Mice , Asthma/genetics , Asthma/immunology , Asthma/pathology , Disease Models, Animal , Eosinophils/pathology , Immunity, Innate/immunology , Lymphocytes/classification , Lymphocytes/immunology , Green Fluorescent Proteins , Immune System/cytology , Immune System/immunology , Immune System/pathology
3.
Front Immunol ; 12: 689896, 2021.
Article in English | MEDLINE | ID: mdl-34381447

ABSTRACT

Mesenteric lymph nodes (mLNs) are sentinel sites of enteral immunosurveillance and immune homeostasis. Immune cells from the gastrointestinal tract (GIT) are constantly recruited to the mLNs in steady-state and under inflammatory conditions resulting in the induction of tolerance and immune cells activation, respectively. Surgical dissection and transplantation of lymph nodes (LN) is a technique that has supported seminal work to study LN function and is useful to investigate resident stromal and endothelial cell biology and their cellular interactions in experimental disease models. Here, we provide a detailed protocol of syngeneic mLN transplantation and report assays to analyze effective mLN engraftment in congenic recipients. Transplanted mLNs allow to study T cell activation and proliferation in preclinical mouse models. Donor mLNs proved viable and functional after surgical transplantation and regenerated blood and lymphatic vessels. Immune cells from the host completely colonized the transplanted mLNs within 7-8 weeks after the surgical intervention. After allogeneic hematopoietic cell transplantation (allo-HCT), adoptively transferred allogeneic CD4+ T cells from FVB/N (H-2q) mice homed to the transplanted mLNs in C57BL/6 (H-2b) recipients during the initiation phase of acute graft-versus-host disease (aGvHD). These CD4+ T cells retained full proliferative capacity and upregulated effector and gut homing molecules comparable to those in mLNs from unmanipulated wild-type recipients. Wild type mLNs transplanted into MHCII deficient syngeneic hosts sufficed to activate alloreactive T cells upon allogeneic hematopoietic cell transplantation, even in the absence of MHCII+ CD11c+ myeloid cells. These data support that orthotopically transplanted mLNs maintain physiological functions after transplantation. The technique of LN transplantation can be applied to study migratory and resident cell compartment interactions in mLNs as well as immune reactions from and to the gut under inflammatory and non-inflammatory conditions.


Subject(s)
Cell Differentiation , Cell Proliferation , Graft vs Host Disease/immunology , Lymph Nodes/transplantation , Lymphocyte Activation , T-Lymphocytes/transplantation , Acute Disease , Adoptive Transfer , Animals , Disease Models, Animal , Graft Survival , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class II/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mesentery , Mice, Inbred C57BL , Phenotype , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation Tolerance , Transplantation, Isogeneic
4.
Nat Commun ; 11(1): 1335, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165639

ABSTRACT

Immune checkpoint blockade (ICB)-based or natural cancer immune responses largely eliminate tumours. Yet, they require additional mechanisms to arrest those cancer cells that are not rejected. Cytokine-induced senescence (CIS) can stably arrest cancer cells, suggesting that interferon-dependent induction of senescence-inducing cell cycle regulators is needed to control those cancer cells that escape from killing. Here we report in two different cancers sensitive to T cell-mediated rejection, that deletion of the senescence-inducing cell cycle regulators p16Ink4a/p19Arf (Cdkn2a) or p21Cip1 (Cdkn1a) in the tumour cells abrogates both the natural and the ICB-induced cancer immune control. Also in humans, melanoma metastases that progressed rapidly during ICB have losses of senescence-inducing genes and amplifications of senescence inhibitors. Metastatic cells also resist CIS. Such genetic and functional alterations are infrequent in metastatic melanomas regressing during ICB. Thus, activation of tumour-intrinsic, senescence-inducing cell cycle regulators is required to stably arrest cancer cells that escape from eradication.


Subject(s)
Cell Cycle , Cellular Senescence , Interferons/metabolism , Melanoma/immunology , Melanoma/pathology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Humans , Immunotherapy , Ki-67 Antigen/metabolism , Lymph Nodes/pathology , Melanoma/therapy , Melanoma/ultrastructure , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT1 Transcription Factor/metabolism , Survival Analysis , Tumor Burden
5.
mBio ; 11(1)2020 02 04.
Article in English | MEDLINE | ID: mdl-32019790

ABSTRACT

Aspergillus fumigatus is an opportunistic fungal pathogen that can cause life-threatening invasive lung infections in immunodeficient patients. The cellular and molecular processes of infection during onset, establishment, and progression of A. fumigatus infections are highly complex and depend on both fungal attributes and the immune status of the host. Therefore, preclinical animal models are of paramount importance to investigate and gain better insight into the infection process. Yet, despite their extensive use, commonly employed murine models of invasive pulmonary aspergillosis are not well understood due to analytical limitations. Here, we present quantitative light sheet fluorescence microscopy (LSFM) to describe fungal growth and the local immune response in whole lungs at cellular resolution within its anatomical context. We analyzed three very common murine models of pulmonary aspergillosis based on immunosuppression with corticosteroids, chemotherapy-induced leukopenia, or myeloablative irradiation. LSFM uncovered distinct architectures of fungal growth and degrees of tissue invasion in each model. Furthermore, LSFM revealed the spatial distribution, interaction, and activation of two key immune cell populations in antifungal defense: alveolar macrophages and polymorphonuclear neutrophils. Interestingly, the patterns of fungal growth correlated with the detected effects of the immunosuppressive regimens on the local immune cell populations. Moreover, LSFM demonstrates that the commonly used intranasal route of spore administration did not result in complete intra-alveolar deposition, as about 80% of fungal growth occurred outside the alveolar space. Hence, characterization by LSFM is more rigorous than by previously used methods employing murine models of invasive pulmonary aspergillosis and pinpoints their strengths and limitations.IMPORTANCE The use of animal models of infection is essential to advance our understanding of the complex host-pathogen interactions that take place during Aspergillus fumigatus lung infections. As in the case of humans, mice need to suffer an immune imbalance in order to become susceptible to invasive pulmonary aspergillosis (IPA), the most serious infection caused by A. fumigatus There are several immunosuppressive regimens that are routinely used to investigate fungal growth and/or immune responses in murine models of invasive pulmonary aspergillosis. However, the precise consequences of the use of each immunosuppressive model for the local immune populations and for fungal growth are not completely understood. Here, to pin down the scenarios involving commonly used IPA models, we employed light sheet fluorescence microscopy (LSFM) to analyze whole lungs at cellular resolution. Our results will be valuable to optimize and refine animal models to maximize their use in future research.


Subject(s)
Aspergillus fumigatus/immunology , Host-Pathogen Interactions/immunology , Invasive Pulmonary Aspergillosis/immunology , Lung/immunology , Lung/microbiology , Adrenal Cortex Hormones/administration & dosage , Animals , Aspergillus fumigatus/growth & development , Disease Models, Animal , Drug Therapy , Female , Imaging, Three-Dimensional , Immunosuppressive Agents/administration & dosage , Invasive Pulmonary Aspergillosis/pathology , Leukopenia/chemically induced , Lung/cytology , Macrophages, Alveolar/immunology , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Neutrophils/immunology
6.
Front Immunol ; 11: 616531, 2020.
Article in English | MEDLINE | ID: mdl-33584706

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1ß1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1-/-) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4+ T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1-/- A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1-/- mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Collagen/metabolism , Integrin alpha1beta1/metabolism , Myeloid-Derived Suppressor Cells/immunology , Spleen/immunology , Animals , Chemotaxis, Leukocyte/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL
7.
Front Immunol ; 9: 1468, 2018.
Article in English | MEDLINE | ID: mdl-30013554

ABSTRACT

The regulation of immune cell migration throughout the body is essential to warrant immunosurveillance and to maintain immune homeostasis. Marking and tracking of these cells has proven important to study mechanisms of immune cell trafficking and cell interaction in vivo. Photoconversion is a well-suited technique for intravital application because it enables contactless time- and location-specific marking of cells in the tissue without surgically manipulating the microenvironment of the cells in question. However, in dividing cells the converted fluorescent protein may decline quickly. Here, we provide a detailed description of the photoconversion technique and its applicability to tracking highly proliferating T cells from the priming site of T cell activation to peripheral target organs of effector function in a preclinical model. Dendra2+ T cells were photoconverted in the Peyer's patches during the initiation phase of acute graft-versus-host disease (GvHD) and tracked through the mesenteric lymph nodes and the peripheral blood to the small intestine with flow cytometry and intravital two-photon microscopy. Photoconverted alloreactive T cells preserved the full proliferative capacity, homing, and migration of alloreactive T cells in the intestinal lamina propria. We conclusively proved that photoconversion of highly proliferative alloreactive T cells in the Peyer's patches is an effective tool to study trafficking of alloreactive T cells under physiologic conditions and to GvHD target tissues. This technique can also be applied to the study of immune cell tracking under inflammatory and non-inflammatory conditions.

SELECTION OF CITATIONS
SEARCH DETAIL