Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 799: 149405, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34365266

ABSTRACT

Monitoring the genetic signal of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through RNA titers in wastewater has emerged as a promising strategy for tracking community-scale prevalence of coronavirus disease 2019 (COVID-19). Although many studies of SARS-CoV-2 in wastewater have been conducted around the world, a uniform procedure for concentrating the virus in wastewater is lacking. The goal of this study was to comprehensively evaluate how different methods for concentrating the suspended solids in wastewater affect the associated SARS-CoV-2 RNA signal and the time required for processing samples for wastewater-based epidemiology efforts. We additionally consider the effects of sampling location in the wastewater treatment train (i.e., following preliminary or primary treatment), pasteurization, and RNA extraction method. Comparison of the liquid phase to suspended solids obtained via centrifugation or vacuum filtration suggests that the RNA signal of SARS-CoV-2 preferentially occurs in the solids. Therefore, we assert that the recovery of SARS-CoV-2 from wastewater should focus on suspended solids. Our data indicate that the measured SARS-CoV-2 signal is higher among samples taken from the primary clarifier effluent, as opposed to those taken after preliminary treatment. Additionally, we provide evidence that sample pasteurization at 60 °C for 90 min reduces the SARS-CoV-2 signal by approximately 50-55%. Finally, the results indicate that a magnetic bead approach to RNA extraction leads to a higher SARS-CoV-2 signal than does a silica membrane approach.


Subject(s)
COVID-19 , Viruses , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
2.
Sci Total Environ ; 778: 146201, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34030356

ABSTRACT

Although many COVID-19 patients isolate and recover at home, the dispersal of SARS-CoV-2 onto surfaces and dust within the home environment remains poorly understood. To investigate the distribution and persistence of SARS-CoV-2 in a home with COVID-19 positive occupants, samples were collected from a household with two confirmed COVID-19 cases (one adult and one child). Home surface swab and dust samples were collected two months after symptom onset (and one month after symptom resolution) in the household. The strength of the SARS-CoV-2 molecular signal in fomites varied as a function of sample location, surface material and cleaning practices. Notably, the SARS-CoV-2 RNA signal was detected at several locations throughout the household although cleaning appears to have attenuated the signal on many surfaces. Of the 24 surfaces sampled, 46% were SARS-CoV-2 positive at the time of sampling. The SARS-CoV-2 concentrations in dust recovered from floor and HVAC filter samples ranged from 104 to 105 N2 gene copies/g dust. While detection of viral RNA does not imply infectivity, this study confirms that the SARS-CoV-2 RNA signal can be detected at several locations within a COVID-19 isolation home and can persist after symptoms have resolved. In addition, the concentration of SARS-CoV-2 (normalized per unit mass of dust) recovered in home HVAC filters may prove useful for estimating SARS-CoV-2 airborne levels in homes. In this work, using the quantitative filter forensics methodology, we estimated an average integrated airborne SARS-CoV-2 concentration of 69 ± 43 copies/m3. This approach can be used to help building scientists and engineers develop best practices in homes with COVID-19 positive occupants.


Subject(s)
COVID-19 , RNA, Viral , Adult , Child , Dust , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL