Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1313, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350993

ABSTRACT

Donor-acceptor semiconducting polymers present countless opportunities for application in photocatalysis. Previous studies have showcased their advantages through direct bottom-up methods. Unfortunately, these approaches often involve harsh reaction conditions, overlooking the impact of uncontrolled polymerization degrees on photocatalysis. Besides, the mechanism behind the separation of electron-hole pairs (excitons) in donor-acceptor polymers remains elusive. This study presents a post-synthetic method involving the light-induced transformation of the building blocks of hyper-cross-linked polymers from donor-carbon-donor to donor-carbon-acceptor states, resulting in a polymer with a substantial intramolecular dipole moment. Thus, excitons are efficiently separated in the transformed polymer. The utility of this strategy is exemplified by the enhanced photocatalytic hydrogen peroxide synthesis. Encouragingly, our observations reveal the formation of intramolecular charge transfer states using time-resolved techniques, confirming transient exciton behavior involving separation and relaxation. This light-induced method not only guides the development of highly efficient donor-acceptor polymer photocatalysts but also applies to various fields, including organic solar cells, light-emitting diodes, and sensors.

2.
Chem Soc Rev ; 53(4): 2022-2055, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38204405

ABSTRACT

Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.

3.
Chem Soc Rev ; 53(3): 1552-1591, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38168798

ABSTRACT

Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.

4.
Chemphyschem ; 25(5): e202300553, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38227379

ABSTRACT

A simple, green, and relatively fast procedure was used to prepare palladium decorated graphene-based materials. A parent graphene-like material with a high specific surface area of up to 384 m2 /g and a total pore volume of 0.42 cm3 /g was prepared via a fast, solvent-free ball milling of graphite powder only. Post-synthetic modification of this graphene-like material was performed via a simplified method using palladium chloride and a small amount of a non-harsh reducing agent - formic acid. Palladium decoration (2.1 wt%) allowed obtaining a few times higher hydrogen adsorption (0.42 wt% at 30 °C and 40 bar) compared to that on bare graphene-based materials. Palladium-decorated graphene materials are promising for hydrogen storage and their usage in this application represents an alternative for conventional fossil fuels. The proposed synthesis and post-modification strategies are in line with green synthesis strategies.

5.
Sci Adv ; 9(49): eadk2407, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064555

ABSTRACT

Current chemical recycling of bulk synthetic plastic, polyethylene (PE), operates at high temperature/pressure and yields a complex mixture of products. PE conversion under mild conditions and with good selectivity toward value-added chemicals remains a practical challenge. Here, we demonstrate an atomic engineering strategy to modify a TiO2 photocatalyst with reversible Pd species for the selective conversion of PE to ethylene (C2H4) and propionic acid via dicarboxylic acid intermediates under moderate conditions. TiO2-supported atomically dispersed Pd species exhibits C2H4 evolution of 531.2 µmol gcat-1 hour-1, 408 times that of pristine TiO2. The liquid product is a valuable chemical propanoic acid with 98.8% selectivity. Plastic conversion with a C2 hydrocarbon yield of 0.9% and a propionic acid yield of 6.3% was achieved in oxidation coupled with 3 hours of photoreaction. In situ spectroscopic studies confirm a dual role of atomic Pd species: an electron acceptor to boost charge separation/transfer for efficient photoredox, and a mediator to stabilize reaction intermediates for selective decarboxylation.

6.
JACS Au ; 3(11): 3227-3236, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034958

ABSTRACT

Transition metal single-atom catalysts (SACs) in uniform carbon nanospheres have gained tremendous interest as electrocatalysts owing to their low cost, high activity, and excellent selectivity. However, their preparation typically involves complicated multistep processes that are not practical for industrial use. Herein, we report a facile one-pot method to produce atomically isolated metal atoms with high loadings in uniform carbon nanospheres without any templates or postsynthesis modifications. Specifically, we use a chemical confinement strategy to suppress the formation of metal nanoparticles by introducing ethylenediaminetetraacetic acid (EDTA) as a molecular barrier to spatially isolate the metal atoms and thus generate SACs. To demonstrate the versatility of this synthetic method, we produced SACs from multiple transition metals, including Fe, Co, Cu, and Ni, with loadings as high as 3.87 wt %. Among these catalytic materials, the Fe-based SACs showed remarkable catalytic activity toward the oxygen reduction reaction (ORR), achieving an onset and half-wave potential of 1.00 and 0.831 VRHE, respectively, comparable to that of commercial 20 wt % Pt/C. Significantly, we were able to steer the ORR selectivity toward either energy generation or hydrogen peroxide production by simply changing the transition metal in the EDTA-based precursor.

7.
Front Chem ; 11: 1277826, 2023.
Article in English | MEDLINE | ID: mdl-37901162

ABSTRACT

Nanoporous carbonaceous materials are ideal ingredients in various industrial products due to their large specific surface area. They are typically prepared by post-synthesis activation and templating methods. Both methods require the input of large amounts of energy to sustain thermal treatment at high temperatures (typically >600°C), which is clearly in violation of the green-chemistry principles. To avoid this issue, other strategies have been developed for the synthesis of carbonaceous materials at lower temperatures (<600°C). This mini review is focused on three strategies suitable for processing carbons at lower temperatures, namely, hydrothermal carbonization, in situ hard templating method, and mechanically induced self-sustaining reaction. Typical procedures of these strategies are demonstrated by using recently reported examples. At the end, some problems associated with the strategies and potential solutions are discussed.

8.
Sci Adv ; 9(42): eadi7755, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37851797

ABSTRACT

The limited availability of freshwater in renewable energy-rich areas has led to the exploration of seawater electrolysis for green hydrogen production. However, the complex composition of seawater presents substantial challenges such as electrode corrosion and electrolyzer failure, calling into question the technological and economic feasibility of direct seawater splitting. Despite many efforts, a comprehensive overview and analysis of seawater electrolysis, including electrochemical fundamentals, materials, and technologies of recent breakthroughs, is still lacking. In this review, we systematically examine recent advances in electrocatalytic seawater splitting and critically evaluate the obstacles to optimizing water supply, materials, and devices for stable hydrogen production from seawater. We demonstrate that robust materials and innovative technologies, especially selective catalysts and high-performance devices, are critical for efficient seawater electrolysis. We then outline and discuss future directions that could advance the techno-economic feasibility of this emerging field, providing a roadmap toward the design and commercialization of materials that can enable efficient, cost-effective, and sustainable seawater electrolysis.

9.
Molecules ; 28(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37764327

ABSTRACT

A facile mechanochemical method was used for the synthesis of ordered mesoporous carbons (OMCs) with well-dispersed metal nanoparticles. The one-pot ball milling of tannins with a metal salt in the presence of a block copolymer followed by thermal treatment led to Ni- or Pt-embedded OMCs with high specific surface areas (up to 600 m2·g-1) and large pore volumes (up to ~0.5 cm3·g-1). The as-prepared OMC-based samples exhibited hexagonally ordered cylindrical mesopores with narrow pore size distributions (average pore size ~7 nm), which implies sufficient long-range copolymer-assisted self-assembly of the tannin-derived polymer upon milling even in the presence of a metal salt. The homogenous decoration of carbons with small-sized metal (Ni or Pt) particles was essential to provide H2 storage capacities up to 0.33 wt.% at 25 °C and under 100 bar. The presented synthesis strategy seems to have great potential in the practical uses of functionalized polymers and carbons for applications in adsorption and catalysis.

10.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570579

ABSTRACT

Mechanochemical synthesis of ordered mesoporous carbons with tunable mesopores and well-developed irregular microporosity is investigated. This synthesis was carried out by the self-assembly of ecofriendly chemicals such as tannin and glyoxal used as carbon precursors, and triblock copolymer as a soft templating agent. The structural properties of the resulting carbons were tailored by using different block copolymers (Pluronic F127, and P123) as soft templates. The various weight ratios of tannin and block copolymer were employed to tune the textural properties of these carbons. The tannin: Pluronic F127 ratios (1:0.75, 1:1, 1:1.1) gave the ordered mesoporous carbons among a wide variety of the samples studied. The ordered mesoporosity was not observed in the case of Pluronic P123 templated mesoporous carbons. The CO2-activated carbon samples obtained for both Pluronic templates showed a high specific surface area (close to 900 m2/g), large pore volume (about 0.6-0.7 cm3g-1), narrow pore size distribution, and high CO2 uptake of about 3.0 mmol g-1 at 1 bar pressure and ambient temperature.

11.
Molecules ; 28(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985612

ABSTRACT

Ultrasounds are commonly used in medical imaging, solution homogenization, navigation, and ranging, but they are also a great energy source for chemical reactions. Sonochemistry uses ultrasounds and thus realizes one of the basic concepts of green chemistry, i.e., energy savings. Moreover, reduced reaction time, mostly using water as a solvent, and better product yields are among the many factors that make ultrasound-induced reactions greener than those performed under conventional conditions. Sonochemistry has been successfully implemented for the preparation of various materials; this review covers sonochemically synthesized nanoporous materials. For instance, sonochemical-assisted methods afforded ordered mesoporous silicas, spherical mesoporous silicas, periodic mesoporous organosilicas, various metal oxides, biomass-derived activated carbons, carbon nanotubes, diverse metal-organic frameworks, and covalent organic frameworks. Among these materials, highly porous samples have also been prepared, such as garlic peel-derived activated carbon with an apparent specific surface area of 3887 m2/g and MOF-177 with an SSA of 4898 m2/g. Additionally, many of them have been examined for practical usage in gas adsorption, water treatment, catalysis, and energy storage-related applications, yielding satisfactory results.

12.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903248

ABSTRACT

γ-Alumina with incorporated metal oxide species (including Fe, Cu, Zn, Bi, and Ga) was synthesized by liquid-assisted grinding-mechanochemical synthesis, applying boehmite as the alumina precursor and suitable metal salts. Various contents of metal elements (5 wt.%, 10 wt.%, and 20 wt.%) were used to tune the composition of the resulting hybrid materials. The different milling time was tested to find the most suitable procedure that allowed the preparation of porous alumina incorporated with selected metal oxide species. The block copolymer, Pluronic P123, was used as a pore-generating agent. Commercial γ-alumina (SBET = 96 m2·g-1), and the sample fabricated after two hours of initial grinding of boehmite (SBET = 266 m2·g-1), were used as references. Analysis of another sample of γ-alumina prepared within 3 h of one-pot milling revealed a higher surface area (SBET = 320 m2·g-1) that did not increase with a further increase in the milling time. So, three hours of grinding time were set as optimal for this material. The synthesized samples were characterized by low-temperature N2 sorption, TGA/DTG, XRD, TEM, EDX, elemental mapping, and XRF techniques. The higher loading of metal oxide into the alumina structure was confirmed by the higher intensity of the XRF peaks. Samples synthesized with the lowest metal oxide content (5 wt.%) were tested for selective catalytic reduction of NO with NH3 (NH3-SCR). Among all tested samples, besides pristine Al2O3 and alumina incorporated with gallium oxide, the increase in reaction temperature accelerated the NO conversion. The highest NO conversion rate was observed for Fe2O3-incorporated alumina (70%) at 450 °C and CuO-incorporated alumina (71%) at 300 °C. The CO2 capture was also studied for synthesized samples and the sample of alumina with incorporated Bi2O3 (10 wt.%) gave the best result (1.16 mmol·g-1) at 25 °C, while alumina alone could adsorb only 0.85 mmol·g-1 of CO2. Furthermore, the synthesized samples were tested for antimicrobial properties and found to be quite active against Gram-negative bacteria, P. aeruginosa (PA). The measured Minimum Inhibitory Concentration (MIC) values for the alumina samples with incorporated Fe, Cu, and Bi oxide (10 wt.%) were found to be 4 µg·mL-1, while 8 µg·mL-1 was obtained for pure alumina.

13.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837091

ABSTRACT

There is an increased interest in porous materials due to their unique properties such as high surface area, enhanced catalytic properties, and biological applications. Various solvent-based approaches have been already used to synthesize porous materials. However, the use of large volume of solvents, their toxicity, and time-consuming synthesis make this process less effective, at least in terms of principles of green chemistry. Mechanochemical synthesis is one of the effective eco-friendly alternatives to the conventional synthesis. It adopts the efficient mixing of reactants using ball milling without or with a very small volume of solvents, gives smaller size nanoparticles (NPs) and larger surface area, and facilitates their functionalization, which is highly beneficial for antimicrobial applications. A large variety of nanomaterials for different applications have already been synthesized by this method. This review emphasizes the comparison between the solvent-based and mechanochemical methods for the synthesis of mainly inorganic NPs for potential antimicrobial applications, although some metal-organic framework NPs are briefly presented too.

14.
J Am Chem Soc ; 145(9): 5384-5392, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36809916

ABSTRACT

Sulfur-based aqueous zinc batteries (SZBs) attract increasing interest due to their integrated high capacity, competitive energy density, and low cost. However, the hardly reported anodic polarization seriously deteriorates the lifespan and energy density of SZBs at a high current density. Here, we develop an integrated acid-assisted confined self-assembly method (ACSA) to elaborate a two-dimensional (2D) mesoporous zincophilic sieve (2DZS) as the kinetic interface. The as-prepared 2DZS interface presents a unique 2D nanosheet morphology with abundant zincophilic sites, hydrophobic properties, and small-sized mesopores. Therefore, the 2DZS interface plays a bifunctional role in reducing the nucleation and plateau overpotential: (a) accelerating the Zn2+ diffusion kinetics through the opened zincophilic channels and (b) inhibiting the kinetic competition of hydrogen evolution and dendrite growth via the significant solvation-sheath sieving effect. Therefore, the anodic polarization is reduced to 48 mV at 20 mA cm-2, and the full-battery polarization is reduced to 42% of an unmodified SZB. As a result, an ultrahigh energy density of 866 Wh kgsulfur-1 at 1 A g-1 and a long lifespan of 10,000 cycles at a high rate of 8 A g-1 are achieved.

15.
J Am Chem Soc ; 144(50): 23214-23222, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36475661

ABSTRACT

Noble metals have broad prospects for catalytic applications yet are restricted to a few packing modes with limited structural flexibility. Here, we achieved geometric structure diversification of noble metals by integrating spatially correlated noble metal single atoms (e.g., Pt, Pd, and Ru) into the lattice of transition metal oxides (TMOs, e.g., Co3O4, Mn5O8, NiO, Fe2O3). The obtained noble metal single atoms exhibited distinct topologies (e.g., crs, fcu-hex-pcu, fcu, and bcu-x) from those of conventional metallic phases. For example, Pt single atoms with a crs topology (Ptcrs-Co3O4) are endowed with synergy of metal-metal and metal-support interactions. A quantitative relationship between various Pt topologies determined by TMO substrates and their electrocatalytic activities was established. We anticipate that this type of interactive single-atom catalysts can bridge the geometric, topological, and electronic structure gaps between the "close-packed" nanoparticles and isolated single atoms as two common categories of heterogeneous catalysts.

16.
Sci Rep ; 12(1): 21294, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494421

ABSTRACT

Novel alumina-based materials enriched with vanadia and lanthana were successfully synthesized via in situ modification using a mechanochemical method, and were applied in ammonia-induced selective catalytic reduction of nitrogen oxides (SCR process). The synthesis was optimized in terms of the ball milling time (3 or 5 h), vanadium content (0.5, 1 or 2 wt% in the final product), and lanthanum content (0.5 or 1 wt% in the final product). Vanadium (V) oxide was immobilized on an alumina support to provide catalytic activity, while lanthana was introduced to increase the affinity of nitrogen oxides and create more active adsorption sites. Mechanochemical synthesis successfully produced mesoporous materials with a large specific surface area of 279-337 m2/g and a wide electrokinetic potential range from 60 to (- 40) mV. Catalytic tests showed that the incorporation of vanadia resulted in a very large improvement in catalytic performance compared with pristine alumina, increasing its efficiency from 14 to 63% at 400 °C. The best SCR performance, a 75% nitrogen oxide conversion rate at a temperature of 450 °C, was obtained for alumina enriched with 2 and 0.5 wt% of vanadium and lanthanum, respectively, which may be considered as a promising result.


Subject(s)
Aluminum Oxide , Ammonia , Aluminum Oxide/chemistry , Ammonia/chemistry , Catalysis , Nitrogen Oxides/chemistry , Oxides/chemistry , Oxidation-Reduction
17.
Adv Colloid Interface Sci ; 310: 102807, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36384078

ABSTRACT

Water could be considered one of the essential natural resources on our planet. However, water contamination has become virtually ubiquitous during the past decades due to several factors, e.g., world population growth, water use in chemical production, and agriculture. Among contaminants, persistent organic pollutants (POPs) were widely spread during the last few decades and are now present all around the world. POPs are connected with several different illnesses, and therefore the removal of these pollutants from water is a challenge for coming years. Cyclodextrins (CDs) are environmentally friendly and cheap pollutant adsorbents due to their peculiar physicochemical properties. Moreover, CDs are relatively easy to use, and many techniques are reported for their functionalization. In addition, several CD derivatives are known and some of them are commercially available. CDs and CD-functionalized materials could be used for removal of different pollutants by using various methods, e.g., adsorption/extraction, soil washing, and electrokinetic/catalytic processes. This is the first review article that provides an overview of CDs/CD-based materials and their use in the remediation of POPs listed under the Stockholm Convention. The mechanisms of the POPs removal by CDs are also discussed.


Subject(s)
Cyclodextrins , Environmental Pollutants , Persistent Organic Pollutants , Cyclodextrins/chemistry , Adsorption , Water
18.
Angew Chem Int Ed Engl ; 61(51): e202213863, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36289045

ABSTRACT

Efficient catalyst design is important for lean-electrolyte sulfur reduction in Li-S batteries. However, most of the reported catalysts were focused on catalyst-polysulfide interactions, and generally exhibit high activity only with a large excess of electrolyte. Herein, we proposed a general rule to boost lean-electrolyte sulfur reduction by controlling the catalyst-solvent interactions. As evidenced by synchrotron-based analysis, in situ spectroscopy and theoretical computations, strong catalyst-solvent interaction greatly enhances the lean-electrolyte catalytic activity and battery stability. Benefitting from the strong interaction between solvent and cobalt catalyst, the Li-S battery achieves stable cycling with only 0.22 % capacity decay per cycle with a low electrolyte/sulfur mass ratio of 4.2. The lean-electrolyte battery delivers 79 % capacity retention compared with the battery with flooded electrolyte, which is the highest among the reported lean-electrolyte Li-S batteries.

19.
Nat Commun ; 13(1): 5471, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36115872

ABSTRACT

Electrosynthesis of urea from CO2 and NOX provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the *NH and *CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed *NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals.

20.
Adv Mater ; 34(44): e2206963, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36073668

ABSTRACT

The poor Zn reversibility has been criticized for limiting applications of aqueous Zn-ion batteries (ZIBs); however, its behavior in aqueous media is not fully uncovered yet. Here, this knowledge gap is addressed, indicating that Zn electrodes face a O2 -involving corrosion, besides H2 evolution and dendrite growth. Differing from aqueous Li/Na batteries, removing O2 cannot enhance ZIB performance because of the aggravated competing H2 evolution. To address Zn issues, a one-off electrolyte strategy is reported by introducing the triple-function C3 H7 Na2 O6 P, which can take effects during the shelf time of battery. It regulates H+ concentration and reduces free-water activity, inhibiting H2 evolution. A self-healing solid/electrolyte interphase (SEI) can be triggered before battery operation, which suppresses O2 adsorption corrosion and dendritic deposition. Consequently, a high Zn reversibility of 99.6% is achieved under a high discharge depth of 85%. The pouch full-cell with a lean electrolyte displays a record lifespan with capacity retention of 95.5% after 500 cycles. This study not only looks deeply into Zn behavior in aqueous media but also underscores rules for the design of active metal anodes, including Zn and Li metals, during shelf time toward real applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...