Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Mult Scler Relat Disord ; 83: 105416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244526

ABSTRACT

BACKGROUND: Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease of the central nervous system and cardiovascular autonomic dysfunction has been well documented in this population. The sympathetic nervous system contributes to beat-to-beat blood pressure regulation primarily by baroreflex control of the peripheral vasculature which may be impaired in females with RRMS. Even at rest, attenuated sympathetic control of vasomotor tone may result in large and frequent blood pressure excursions (i.e., greater blood pressure variability). Therefore, the primary purpose of this investigation was to test the following hypotheses; (1) females with RRMS have augmented beat-to-beat blood pressure variability compared to healthy controls and (2) reduced sympathetic baroreflex sensitivity in females with RRMS is related to augmented blood pressure variability. METHODS: Electrocardiogram and beat-to-beat blood pressure were continuously recorded during 8-10 min of supine rest in 26 females with clinically definite RRMS and 24 sex-, age- and BMI- matched healthy controls. Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (MS, n = 15; CON, n = 14). Traditional statistical measurements of dispersions were used to index beat-to-beat blood pressure variability. Spontaneous sympathetic baroreflex sensitivity was quantified by sorting diastolic blood pressures into 3 mmHg bins and calculating MSNA burst incidence within each bin. Weighted linear regression was then used to account for the number of cardiac cycles in each bin and calculate slopes. Spontaneous cardiac baroreflex sensitivity was determined using the sequence method. RESULTS: Groups had similar resting mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), MSNA burst frequency and MSNA burst incidence (All P > 0.05). The standard deviation and interquartile range of MAP, SBP and DBP were less in females with RRMS compared to healthy controls (All P < 0.05). There were no between groups differences in sympathetic baroreflex sensitivity or cardiac baroreflex sensitivity (Both P > 0.05) and baroreflex sensitivity measures were not related to any indices of blood pressure variability (Both P > 0.05). CONCLUSION: These data suggest that females with RRMS have reduced beat-to-beat blood pressure variability. However, this does not appear to be related to changes in sympathetic or cardiac baroreflex sensitivity.


Subject(s)
Hypertension , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Female , Male , Blood Pressure/physiology , Baroreflex/physiology , Muscle, Skeletal , Heart Rate/physiology
3.
Med Sci Sports Exerc ; 56(6): 1056-1065, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38233995

ABSTRACT

INTRODUCTION: Trauma-induced hemorrhage is a leading cause of death in prehospital settings. Experimental data demonstrate that females have a lower tolerance to simulated hemorrhage (i.e., central hypovolemia). However, the mechanism(s) underpinning these responses are unknown. Therefore, this study aimed to compare autonomic cardiovascular responses during central hypovolemia between the sexes. We hypothesized that females would have a lower tolerance and smaller increase in muscle sympathetic nerve activity (MSNA) to simulated hemorrhage. METHODS: Data from 17 females and 19 males, aged 19-45 yr, were retrospectively analyzed. Participants completed a progressive lower-body negative pressure (LBNP) protocol to presyncope to simulate hemorrhagic tolerance with continuous measures of MSNA and beat-to-beat hemodynamic variables. We compared responses at baseline, at two LBNP stages (-40 and -50 mmHg), and at immediately before presyncope. In addition, we compared responses at relative percentages (33%, 66%, and 100%) of hemorrhagic tolerance, calculated via the cumulative stress index (i.e., the sum of the product of time and pressure at each LBNP stage). RESULTS: Females had lower tolerance to central hypovolemia (female: 561 ± 309 vs male: 894 ± 304 min·mmHg [time·LBNP]; P = 0.003). At LBNP -40 and -50 mmHg, females had lower diastolic blood pressures (main effect of sex: P = 0.010). For the relative LBNP analysis, females exhibited lower MSNA burst frequency (main effect of sex: P = 0.016) accompanied by a lower total vascular conductance (sex: P = 0.028; main effect of sex). CONCLUSIONS: Females have a lower tolerance to central hypovolemia, which was accompanied by lower diastolic blood pressure at -40 and -50 mmHg LBNP. Notably, females had attenuated MSNA responses when assessed as relative LBNP tolerance time.


Subject(s)
Hemorrhage , Hypovolemia , Lower Body Negative Pressure , Sympathetic Nervous System , Humans , Female , Male , Sympathetic Nervous System/physiology , Adult , Young Adult , Hemorrhage/physiopathology , Hypovolemia/physiopathology , Retrospective Studies , Sex Factors , Middle Aged , Hemodynamics/physiology , Blood Pressure/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Heart Rate/physiology , Syncope/physiopathology , Syncope/etiology
4.
Biology (Basel) ; 12(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37626974

ABSTRACT

Profound heat stress can damage the gastrointestinal barrier, leading to microbial translocation from the gut and subsequent systemic inflammation. Despite the greater vulnerability of older people to heat wave-related morbidity and mortality, it is unknown if age modulates gastrointestinal barrier damage and inflammation during heat stress. Therefore, the aim of this study was to determine if aging impacted enterocyte damage and systemic inflammatory responses to a 3-h exposure to very hot and dry (47 °C, 15% humidity) heat with accompanying activities of daily living (intermittent activity at 3 METS). Data from 16 young (age 21 to 39 years) and 16 older (age 65 to 76 years) humans were used to address this aim. In each group, log-transformed plasma concentrations of intestinal fatty acid binding protein (I-FABPlog), interleukin-8 (IL-8log), and tissue factor (TFlog) were assessed as indices of enterocyte damage, systemic inflammation, and blood coagulation, respectively, before and after the 3-h heat exposure. In the younger cohort, I-FABPlog concentration did not increase from pre to post heat exposure (p = 0.264, d = 0.20), although it was elevated in the older group (p = 0.014, d = 0.67). The magnitude of the increase in I-FABPlog was greater in the older participants (p = 0.084, d = 0.55). Across all participants, there was no correlation between the change in core temperature and the change in IFABPlog. There was no change in IL-8log in the younger group (p = 0.193, d = 0.23) following heat exposure, but we observed a decrease in IL-8log in the older group (p = 0.047, d = 0.48). TFlog decreased in the younger group (p = 0.071, d = 0.41), but did not change in the older group (p = 0.193, d = 0.15). Our data indicate that I-FABPlog concentration (an index of enterocyte damage) is increased in older humans during a 3-h extreme heat exposure. Future studies should determine whether this marker reflects increased gastrointestinal barrier permeability in older individuals during heat exposure.

5.
J Appl Physiol (1985) ; 135(2): 445-455, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37410904

ABSTRACT

Older adults are at greater risk for heat-related morbidity and mortality, due in part to age-related reductions in heat dissipating capabilities. Previous studies investigating the impact of age on responses to heat stress used approaches that lack activities of daily living and therefore may not accurately depict the thermal/physiological strain that would occur during actual heatwaves. We sought to compare the responses of young (18-39 yr) and older (≥65 yr) adults exposed to two extreme heat simulations. Healthy young (n = 20) and older (n = 20) participants underwent two 3-h extreme heat exposures on different days: 1) DRY (47°C and 15% humidity) and 2) HUMID (41°C and 40% humidity). To mimic heat generation comparable with activities of daily living, participants performed 5-min bouts of light physical activity dispersed throughout the heat exposure. Measurements included core and skin temperatures, heart rate, blood pressure, local and whole body sweat rate, forearm blood flow, and perceptual responses. Δ core temperature (Young: 0.68 ± 0.27°C vs. Older: 1.37 ± 0.42°C; P < 0.001) and ending core temperature (Young: 37.81 ± 0.26°C vs. Older: 38.15 ± 0.43°C; P = 0.005) were greater in the older cohort during the DRY condition. Δ core temperature (Young: 0.58 ± 0.25°C vs. Older: 1.02 ± 0.32°C; P < 0.001), but not ending core temperature (Young: 37.67 ± 0.34°C vs. Older: 37.83 ± 0.35°C; P = 0.151), was higher in the older cohort during the HUMID condition. We demonstrated that older adults have diminished thermoregulatory responses to heat stress with accompanying activities of daily living. These findings corroborate previous reports and confirm epidemiological data showing that older adults are at a greater risk for hyperthermia.NEW & NOTEWORTHY Using an experimental model of extreme heat exposure that incorporates brief periods of light physical activity to simulate activities of daily living, the extent of thermal strain reported herein more accurately represents what would occur during actual heatwave conditions. Despite matching metabolic heat generation and environmental conditions, we show that older adults have augmented core temperature responses, likely due to age-related reductions in heat dissipating mechanisms.


Subject(s)
Activities of Daily Living , Extreme Heat , Humans , Aged , Hot Temperature , Body Temperature Regulation/physiology , Sweating , Body Temperature/physiology
6.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R64-R76, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34851729

ABSTRACT

Our knowledge about how low-dose (analgesic) fentanyl affects autonomic cardiovascular regulation is primarily limited to animal experiments. Notably, it is unknown if low-dose fentanyl influences human autonomic cardiovascular responses during painful stimuli in humans. Therefore, we tested the hypothesis that low-dose fentanyl reduces perceived pain and subsequent sympathetic and cardiovascular responses in humans during an experimental noxious stimulus. Twenty-three adults (10 females/13 males; 27 ± 7 yr; 26 ± 3 kg·m-2, means ± SD) completed this randomized, crossover, placebo-controlled trial during two laboratory visits. During each visit, participants completed a cold pressor test (CPT; hand in ∼0.4°C ice bath for 2 min) before and 5 min after drug/placebo administration (75 µg fentanyl or saline). We compared pain perception (100-mm visual analog scale), muscle sympathetic nerve activity (MSNA; microneurography, 11 paired recordings), and beat-to-beat blood pressure (BP; photoplethysmography) between trials (at both pre- and postdrug/placebo timepoints) using paired, two-tailed t tests. Before drug/placebo administration, perceived pain (P = 0.8287), ΔMSNA burst frequency (P = 0.7587), and Δmean BP (P = 0.8649) during the CPT were not different between trials. After the drug/placebo administration, fentanyl attenuated perceived pain (36 vs. 66 mm, P < 0.0001), ΔMSNA burst frequency (9 vs. 17 bursts/min, P = 0.0054), and Δmean BP (7 vs. 13 mmHg, P = 0.0174) during the CPT compared with placebo. Fentanyl-induced reductions in pain perception and Δmean BP were moderately related (r = 0.40, P = 0.0641). These data provide valuable information regarding how low-dose fentanyl reduces autonomic cardiovascular responses during an experimental painful stimulus.


Subject(s)
Analgesics, Opioid/administration & dosage , Blood Pressure/drug effects , Cardiovascular System/innervation , Fentanyl/administration & dosage , Muscle, Skeletal/innervation , Pain Perception/drug effects , Pain Threshold/drug effects , Pain/drug therapy , Sympathetic Nervous System/drug effects , Adult , Analgesics, Opioid/adverse effects , Cold Temperature , Cross-Over Studies , Female , Fentanyl/adverse effects , Humans , Immersion , Male , Pain/physiopathology , Pain/psychology , Sympathetic Nervous System/physiopathology , Time Factors , Water , Young Adult
7.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R55-R63, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34851734

ABSTRACT

Hemorrhage is a leading cause of battlefield and civilian trauma deaths. Several pain medications, including fentanyl, are recommended for use in the prehospital (i.e., field setting) for a hemorrhaging solider. However, it is unknown whether fentanyl impairs arterial blood pressure (BP) regulation, which would compromise hemorrhagic tolerance. Thus, the purpose of this study was to test the hypothesis that an analgesic dose of fentanyl impairs hemorrhagic tolerance in conscious humans. Twenty-eight volunteers (13 females) participated in this double-blinded, randomized, placebo-controlled trial. We conducted a presyncopal limited progressive lower body negative pressure test (LBNP; a validated model to simulate hemorrhage) following intravenous administration of fentanyl (75 µg) or placebo (saline). We quantified tolerance as a cumulative stress index (mmHg·min), which was compared between trials using a paired, two-tailed t test. We also compared muscle sympathetic nerve activity (MSNA; microneurography) and beat-to-beat BP (photoplethysmography) during the LBNP test using a mixed effects model [time (LBNP stage) × trial]. LBNP tolerance was not different between trials (fentanyl: 647 ± 386 vs. placebo: 676 ± 295 mmHg·min, P = 0.61, Cohen's d = 0.08). Increases in MSNA burst frequency (time: P < 0.01, trial: P = 0.29, interaction: P = 0.94) and reductions in mean BP (time: P < 0.01, trial: P = 0.50, interaction: P = 0.16) during LBNP were not different between trials. These data, the first to be obtained in conscious humans, demonstrate that administration of an analgesic dose of fentanyl does not alter MSNA or BP during profound central hypovolemia, nor does it impair tolerance to this simulated hemorrhagic insult.


Subject(s)
Analgesics, Opioid/administration & dosage , Blood Pressure/drug effects , Cardiovascular System/innervation , Fentanyl/administration & dosage , Hemorrhage/physiopathology , Hypovolemia/physiopathology , Muscle, Skeletal/innervation , Sympathetic Nervous System/drug effects , Adult , Analgesics, Opioid/adverse effects , Cross-Over Studies , Double-Blind Method , Female , Fentanyl/adverse effects , Hemorrhage/diagnosis , Humans , Hypovolemia/diagnosis , Infusions, Intravenous , Lower Body Negative Pressure , Male , Middle Aged , Sympathetic Nervous System/physiopathology , Young Adult
8.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R273-R278, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34259042

ABSTRACT

Prior data suggest that, relative to the early follicular phase, women in the late follicular phase are protected against endothelial ischemia-reperfusion (I/R) injury when estradiol concentrations are highest. In addition, endothelial I/R injury is consistently observed in men with naturally low endogenous estradiol concentrations that are similar to those of women in the early follicular phase. Therefore, the purpose of this study was to determine whether the vasodeleterious effect of I/R injury differs between women in the early follicular phase of the menstrual cycle and age-matched men. We tested the hypothesis that I/R injury would attenuate endothelium-dependent vasodilation to the same extent in women and age-matched men with similar circulating estradiol concentrations. Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasound) in young healthy men (n = 22) and women (n = 12) before (pre-I/R) and immediately after (post-I/R) I/R injury, which was induced via 20 min of arm circulatory arrest followed by 20-min reperfusion. Serum estradiol concentrations did not differ between sexes (men 115.0 ± 33.9 pg·mL-1 vs. women 90.5 ± 40.8 pg·mL-1; P = 0.2). The magnitude by which I/R injury attenuated endothelium-dependent vasodilation did not differ between men (pre-I/R 5.4 ± 2.4% vs. post-I/R 3.0 ± 2.7%) and women (pre-I/R 6.1 ± 2.8% vs. post-I/R 3.7 ± 2.7%; P = 0.9). Our data demonstrate that I/R injury similarly reduces endothelial function in women in the early follicular phase of the menstrual cycle and age-matched men with similar estradiol concentrations.


Subject(s)
Arm/blood supply , Brachial Artery/physiopathology , Endothelium, Vascular/physiopathology , Estradiol/blood , Follicular Phase/blood , Reperfusion Injury/physiopathology , Vasodilation , Adult , Brachial Artery/diagnostic imaging , Female , Humans , Male , Reperfusion Injury/blood , Reperfusion Injury/diagnostic imaging , Sex Factors , Young Adult
9.
J Appl Physiol (1985) ; 130(3): 846-852, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33411641

ABSTRACT

Ischemic preconditioning attenuates the reduction in brachial artery endothelial function following an ischemia-reperfusion injury. Brief bouts of systemic hypoxemia could similarly mitigate the blunted vasodilatory response induced by an ischemia-reperfusion injury. The aim of the present study was to determine whether an acute bout of intermittent hypoxia protects against an ischemia-reperfusion injury in young healthy individuals. Brachial artery endothelial function was assessed by flow-mediated dilation in 16 young healthy individuals before and after a 20-min upper arm blood flow occlusion to induce ischemia-reperfusion injury. Blood flow occlusion was preceded by either intermittent hypoxia or intermittent normoxia. Intermittent hypoxia consisted of three 4-min hypoxic cycles at an arterial oxygen saturation of 87 ± 3% separated by 4-min normoxic cycles. Intermittent hypoxia resulted in a lower arterial oxygen saturation than intermittent normoxia (hypoxia: 87 ± 3% vs. normoxia: 99 ± 1%, P < 0.01), which was equivalent to a lower fraction of inspired oxygen (hypoxia: 0.123 ± 0.013 and normoxia: 0.210 ± 0.003, P < 0.01). When preceded by intermittent normoxia, blood flow occlusion resulted in a blunted flow-mediated dilation. In contrast, the reduction in flow-mediated dilation following blood flow occlusion was attenuated by prior exposure to intermittent hypoxia (hypoxia: 6.4 ± 1.9 to 4.4 ± 2.3% and normoxia: 7.1 ± 2.5 to 4.0 ± 2.4%, time × condition interaction P = 0.048). Exposure to intermittent hypoxia did not affect mean arterial pressure (hypoxia: 92 ± 9 mmHg and normoxia: 89 ± 8 mmHg, P = 0.19) or cardiac output (hypoxia: 5.8 ± 1.1 L·min-1 and normoxia: 5.3 ± 1.1 L·min-1, P = 0.29). In conclusion, hypoxic preconditioning attenuates the reduction in flow-mediated dilation induced by blood flow occlusion in young healthy individuals. Intermittent hypoxia represents a potential strategy to mitigate the effect of ischemia-reperfusion injury associated with ischemic events.NEW & NOTEWORTHY Ischemia-reperfusion injury induced by restoration of blood flow following occlusion impairs flow-mediated dilation, a marker of endothelium-dependent vasodilation. In young healthy adults, exposure to intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and normoxic air, before an ischemia-reperfusion injury significantly attenuated the reduction in flow-mediated dilation. Thus, hypoxic preconditioning represents a potential strategy to mitigate the effect of ischemia-reperfusion injury associated with ischemic events.


Subject(s)
Ischemic Preconditioning , Reperfusion Injury , Adult , Brachial Artery , Humans , Hypoxia , Vasodilation
10.
Article in English | MEDLINE | ID: mdl-33020411

ABSTRACT

Intermittent hypoxia, defined as alternating bouts of breathing hypoxic and normoxic air, has the potential to improve oxygen-carrying capacity through an erythropoietin-mediated increase in hemoglobin mass. The purpose of this study was to determine the effect of a single session of intermittent hypoxia on erythropoietin levels and hemoglobin mass in young healthy individuals. Nineteen participants were randomly assigned to an intermittent hypoxia group (Hyp, n = 10) or an intermittent normoxia group (Norm, n = 9). Intermittent hypoxia consisted of five 4-min hypoxic cycles at a targeted arterial oxygen saturation of 90% interspersed with 4-min normoxic cycles. Erythropoietin levels were measured before and two hours following completion of the protocol. Hemoglobin mass was assessed the day before and seven days after exposure to intermittent hypoxia or normoxia. As expected, the intermittent hypoxia group had a lower arterial oxygen saturation than the intermittent normoxia group during the intervention (Hyp: 89 ± 1 vs. Norm: 99 ± 1%, p < 0.01). Erythropoietin levels did not significantly increase following exposure to intermittent hypoxia (Hyp: 8.2 ± 4.5 to 9.0 ± 4.8, Norm: 8.9 ± 1.7 to 11.1 ± 2.1 mU·mL-1, p = 0.15). Hemoglobin mass did not change following exposure to intermittent hypoxia. This single session of intermittent hypoxia was not sufficient to elicit a significant rise in erythropoietin levels or hemoglobin mass in young healthy individuals.


Subject(s)
Erythrocytes/metabolism , Erythropoietin/metabolism , Hypoxia/physiopathology , Oxygen/metabolism , Adult , Erythropoietin/blood , Female , Hemoglobins/analysis , Humans , Hypoxia/blood , Male , Oxygen/blood , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...