Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
iScience ; 26(12): 108430, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077133

ABSTRACT

Hybridization of distinct populations or species is an important evolutionary driving force. For invasive species, hybridization can enhance their competitive advantage as a source of adaptive novelty by introgression of selectively favored alleles. Using single-nucleotide polymorphism (SNP) microarrays we assess genetic diversity and population structure in the invasive ctenophore Mnemiopsis leidyi in native habitats. Hybrids are present at the distribution border of two lineages, especially in highly fluctuating environments including very low salinities, while hybrids occur at lower frequency in stable high-saline habitats. Analyses of hybridization status suggest that hybrids thriving in variable environments are selected for, while they are selected against in stable habitats. Translocation of hybrids might accelerate invasion success in non-native habitats. This could be especially relevant for M. leidyi as low salinity limits its invasion range in western Eurasia. Although hybridization status is currently disregarded, it could determine high-risk areas where ballast water exchange should be prevented.

2.
Trends Ecol Evol ; 38(10): 980-993, 2023 10.
Article in English | MEDLINE | ID: mdl-37277269

ABSTRACT

Larvaceans are gelatinous zooplankton abundant throughout the ocean. Larvaceans have been overlooked in research because they are difficult to collect and are perceived as being unimportant in biogeochemical cycles and food-webs. We synthesise evidence that their unique biology enables larvaceans to transfer more carbon to higher trophic levels and deeper into the ocean than is commonly appreciated. Larvaceans could become even more important in the Anthropocene because they eat small phytoplankton that are predicted to become more prevalent under climate change, thus moderating projected future declines in ocean productivity and fisheries. We identify critical knowledge gaps and argue that larvaceans should be incorporated into ecosystem assessments and biogeochemical models to improve predictions of the future ocean.


Subject(s)
Ecosystem , Zooplankton , Animals , Carbon Sequestration , Food Chain , Phytoplankton
3.
Data Brief ; 44: 108493, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35966942

ABSTRACT

This data article includes a qualitative and quantitative description of the gelatinous macrozooplankton community of the North Sea during January-February 2021. Sampling was conducted during the 1st quarter International Bottom Trawl Survey (IBTS) on board the Danish R/V DANA (DTU Aqua Denmark) and the Swedish R/V Svea (SLU Sweden), as part of the ichthyoplankton investigation during night-time. A total of 147 stations were investigated in the western, central and eastern North Sea as well as the Skagerrak and Kattegat. Sampling was conducted with a 13 m long Midwater Ring Net (MIK net, Ø 2 m, mesh size 1.6 mm, cod end with smaller mesh size of 500 µm), equipped with a flow meter. The MIK net was deployed in double oblique hauls from the surface to c. 5 m above the sea floor [1,2]. Samples were visually analysed unpreserved on a light table and/or with a stereomicroscope or magnifying lamp within 2 hours after catch. A total of 13,510 individuals were counted/sized. Twelve gelatinous macrozooplankton species or genera were encountered, namely the hydrozoan Aequorea vitrina, Aglantha digitale, Clytia spp., Leuckartiara octona, Tima bairdii, Muggiaea atlantica; the scyphozoans Cyanea capillata and Cyanea lamarckii and the ctenophores Beroe spp., Bolinopsis infundibulum, Mnemiopsis leidyi, Pleurobrachia pileus. Abundance data are presented on a volume specific (m-3) and area specific (m-2) basis. Size data have been used to estimate wet weights based on published length-weight regressions (see Table 1). For the groups i) hydrozoan jellyfish, ii) scyphozoan jellyfish, iii) ctenophores, as well as iv) grouped gelatinous macrozooplankton, spatial weight specific distribution patterns are presented. This unpublished dataset contributes baseline information about the gelatinous macrozooplankton diversity and its specific distribution patterns in the extended North Sea area during winter (January-February) 2021. These data can be an important contribution to address global change impacts on marine systems, especially considering gelatinous macrozooplankton abundance changes in relation to anthropogenic stressors.

4.
Mar Environ Res ; 175: 105566, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35123181

ABSTRACT

Physical and topographic characteristics can structure pelagic habitats and affect the plankton community composition. For example, oxygen minimum zones (OMZs) are expected to lead to a habitat compression for species with a high oxygen demand, while upwelling of nutrient-rich deep water at seamounts can locally increase productivity, especially in oligotrophic oceanic waters. Here we investigate the response of the gelatinous zooplankton (GZ) assemblage and biomass to differing oxygen conditions and to a seamount in the Eastern Tropical North Atlantic (ETNA) around the Cape Verde archipelago. A total of 16 GZ taxa (>1100 specimens) were found in the upper 1000 m with distinct species-specific differences, such as the absence of deep-living species Atolla wyvillei and Periphylla periphylla above the shallow seamount summit. Statistical analyses considering the most prominent groups, present at all stations, namely Beroe spp., hydromedusae (including Zygocanna vagans, Halicreas minimum, Colobonema sericeum, Solmissus spp.) and total GZ, showed a strong positive correlation of abundance with temperature for all groups, whereas oxygen had a weak negative correlation only with abundances of Beroe spp. and hydromedusae. To account for size differences between species, we established length-weight regressions and investigated total GZ biomass changes in relation to physical (OMZ) and topographic characteristics. The highest GZ biomass was observed at depths of lowest oxygen concentrations and deepest depth strata at the southeastern flank of the seamount and at two stations south of the Cape Verde archipelago. Our data suggest that, irrespective of their patchy distribution, GZ organisms are ubiquitous food web members of the ETNA, and their habitat includes waters of low oxygen content.


Subject(s)
Oxygen , Zooplankton , Animals , Atlantic Ocean , Biomass
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911766

ABSTRACT

Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.


Subject(s)
Ctenophora/genetics , Genetic Variation , Genomics , Animal Distribution , Animals , Ctenophora/physiology , Genome , Introduced Species
6.
Microbiologyopen ; 9(9): e1094, 2020 09.
Article in English | MEDLINE | ID: mdl-32652897

ABSTRACT

The associated microbiota of marine invertebrates plays an important role to the host in relation to fitness, health, and homeostasis. Cooperative and competitive interactions between bacteria, due to release of, for example, antibacterial substances and quorum sensing (QS)/quorum quenching (QQ) molecules, ultimately affect the establishment and dynamics of the associated microbial community. Aiming to address interspecies competition of cultivable microbes associated with emerging model species of the basal animal phyla Cnidaria (Aurelia aurita) and Ctenophora (Mnemiopsis leidyi), we performed a classical isolation approach. Overall, 84 bacteria were isolated from A. aurita medusae and polyps, 64 bacteria from M. leidyi, and 83 bacteria from ambient seawater, followed by taxonomically classification by 16S rRNA gene analysis. The results show that A. aurita and M. leidyi harbor a cultivable core microbiome consisting of typical marine ubiquitous bacteria also found in the ambient seawater. However, several bacteria were restricted to one host suggesting host-specific microbial community patterns. Interbacterial interactions were assessed by (a) a growth inhibition assay and (b) QS interference screening assay. Out of 231 isolates, 4 bacterial isolates inhibited growth of 17 isolates on agar plates. Moreover, 121 of the 231 isolates showed QS-interfering activities. They interfered with the acyl-homoserine lactone (AHL)-based communication, of which 21 showed simultaneous interference with autoinducer 2. Overall, this study provides insights into the cultivable part of the microbiota associated with two environmentally important marine non-model organisms and into interbacterial interactions, which are most likely considerably involved in shaping a healthy and resilient microbiota.


Subject(s)
Bacteria/isolation & purification , Ctenophora/microbiology , Microbiota/physiology , Scyphozoa/microbiology , Acyl-Butyrolactones/metabolism , Animals , Bacteria/classification , Bacteria/growth & development , Bacterial Physiological Phenomena , Genes, rRNA , Microbial Interactions , Phylogeny , Quorum Sensing , RNA, Ribosomal, 16S/genetics , Seawater/microbiology
7.
Sci Total Environ ; 734: 139471, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32464382

ABSTRACT

The translocation of non-indigenous species (NIS) around the world, especially in marine systems, is increasingly being recognized as a matter of concern. Species translocations have been shown to lead to wide ranging changes in food web structure and functioning. In addition to the direct effects of NIS, they could facilitate the accumulation or translocation of bacteria as part of their microbiomes. The Baltic Sea harbours many non-indigenous species, with most recent detection of the jellyfish Blackfordia virginica and the comb jelly Mnemiopsis leidyi in the low saline southwestern Baltic Sea. In this study, we used a multidisciplinary approach and investigated three gelatinous zooplankton species that co-occur in the same environment and feed on similar zooplankton food sources but show different histories of origin. The aim was to conduct a comparative microbiome analysis of indigenous and non-indigenous gelatinous zooplankton species in the low-saline southwestern Baltic Sea. Next-generation 16S rRNA marker gene sequencing of the V1/V2 region was employed to study the bacterial microbiome compositions. All tested species showed significant differences in their microbiome compositions (one way ANOSIM, R = 1, P < 0.008) with dissimilarities ranging from 85 to 92%. The indigenous jellyfish Aurelia aurita showed the highest bacterial operational taxonomic unit (OTU) richness. The overall differentiation between microbiomes was driven by eight indicator OTUs, which included Mycoplasma and Vibrio species. These bacteria can be problematic, as they include known pathogenic strains that are relevant to human health and aquaculture activities. Our results suggest that the impact assessment of NIS should consider potential pathogenic bacteria, enriched in the environment due to invasion, as potential risks to aquaculture activities.


Subject(s)
Microbiota , Animals , RNA, Ribosomal, 16S , Scyphozoa , Vibrio , Zooplankton
9.
Microbiome ; 7(1): 133, 2019 09 14.
Article in English | MEDLINE | ID: mdl-31521200

ABSTRACT

BACKGROUND: The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as "metaorganisms." The goal of the Collaborative Research Center "Origin and Function of Metaorganisms" is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants. METHODS: In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample. CONCLUSION: While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Metagenome/physiology , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Animals , Bacteria/classification , Bacteria/genetics , Databases, Genetic , Humans , Metagenome/genetics , Microbiota/genetics , Phylogeny
10.
Data Brief ; 25: 104186, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31388520

ABSTRACT

This article describes the biodiversity of gelatinous macrozooplankton and presents quantitative field data on their community composition and distribution pattern in the North Sea during August 2018. The data set consists of jellyfish and comb jelly species abundance estimates which are based on sampling at 62 stations in the central and southern North Sea covering Danish waters, the German Bight, waters off the Dutch coast as well as the western North Sea off the UK coast and the central North Sea. The sampling gear was a 13 m long MIK-net (modified Methot Isaac Kidd net; Ø 2 m, mesh size 1 mm, mesh size cod end 500 µm) deployed in double oblique hauls from the surface to 5 m above the sea floor. Samples were visually analysed for gelatinous macrozooplankton (>2 mm) using a light table. Samples were processed within 1 hour after catch. In total, 6239 gelatinous macrozooplankton specimen were caught. Spatial distribution pattern described in this article include the jellyfish species Aequorea sp., Aurelia aurita, Beroe sp., Chrysaora hysoscella, Clytia hemisphaerica, Cyanea capillata, Cyanea lamarckii, Eirene viridula, Leuckartiara octona, Melicertum octocostatum, Obelia sp. as well as the comb jelly species Mnemiopsis leidyi and Pleurobrachia pileus. Further, size frequency distributions of abundant taxa are provided together with a summary of abundances as well as average, maximum and minimum sizes of all species. This dataset has not previously been published and is of high value for comparison with other - and future - investigations of gelatinous macrozooplankton in the North Sea. The data were obtained during an internationally coordinated, standard fishery survey which is carried out annually (Quarter 3 - North Sea - International Bottom Trawl Survey - Q3 NS-IBTS). The gained information could be used as baseline for a monitoring of potential changes in gelatinous macrozooplankton abundances to address the long standing question if gelatinous zooplankton are on the rise due to climate change induced stressors.

11.
Sci Rep ; 9(1): 8891, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222051

ABSTRACT

Marine snow aggregates represent heterogeneous agglomerates of dead and living organic matter. Composition is decisive for their sinking rates, and thereby for carbon flux to the deep sea. For oligotrophic oceans, information on aggregate composition is particularly sparse. To address this, the taxonomic composition of aggregates collected from the subtropical and oligotrophic Sargasso Sea (Atlantic Ocean) was characterized by 16S and 18S rRNA gene sequencing. Taxonomy assignment was aided by a collection of the contemporary plankton community consisting of 75 morphologically and genetically identified plankton specimens. The diverse rRNA gene reads of marine snow aggregates, not considering Trichodesmium puffs, were dominated by copepods (52%), cnidarians (21%), radiolarians (11%), and alveolates (8%), with sporadic contributions by cyanobacteria, suggesting a different aggregate composition than in eutrophic regions. Composition linked significantly with sampling location but not to any measured environmental parameters or plankton biomass composition. Nevertheless, indicator and network analyses identified key roles of a few rare taxa. This points to complex regulation of aggregate composition, conceivably affected by the environment and plankton characteristics. The extent to which this has implications for particle densities, and consequently for sinking rates and carbon sequestration in oligotrophic waters, needs further interrogation.


Subject(s)
Cyanobacteria/classification , Eukaryotic Cells , Marine Biology , Snow , Oceans and Seas
12.
Zoology (Jena) ; 133: 81-87, 2019 04.
Article in English | MEDLINE | ID: mdl-30979392

ABSTRACT

Current research highlights the importance of associated microbes in contributing to the functioning, health, and even adaptation of their animal, plant, and fungal hosts. As such, we are witnessing a shift in research that moves away from focusing on the eukaryotic host sensu stricto to research into the complex conglomerate of the host and its associated microorganisms (i.e., microbial eukaryotes, archaea, bacteria, and viruses), the so-called metaorganism, as the biological entity. While recent research supports and encourages the adoption of such an integrative view, it must be understood that microorganisms are not involved in all host processes and not all associated microorganisms are functionally important. As such, our intention here is to provide a critical review and evaluation of perspectives and limitations relevant to studying organisms in a metaorganism framework and the functional toolbox available to do so. We note that marker gene-guided approaches that primarily characterize microbial diversity are a first step in delineating associated microbes but are not sufficient to establish proof of their functional relevance. More sophisticated tools and experiments are necessary to reveal the specific functions of associated microbes. This can be accomplished through the study of metaorganisms in less complex environments, the targeted manipulation of microbial associates, or work at the mechanistic level with the toolbox available in model systems. We conclude that the metaorganism framework is a powerful new concept to help provide answers to longstanding biological questions such as the evolution and ecology of organismal complexity and the importance of organismal symbioses to ecosystem functioning. The intricacy of the metaorganism requires a holistic framework combining reductionist and integrative approaches to resolve the structure and function of its member species and to disclose the various roles that microorganisms play in the biology of their hosts.


Subject(s)
Microbiota , Animals , Symbiosis
13.
J Innate Immun ; 11(5): 393-404, 2019.
Article in English | MEDLINE | ID: mdl-30566939

ABSTRACT

Animals are usually regarded as independent entities within their respective environments. However, within an organism, eukaryotes and prokaryotes interact dynamically to form the so-called metaorganism or holobiont, where each partner fulfils its versatile and crucial role. This review focuses on the interplay between microorganisms and multicellular eukaryotes in the context of host physiology, in particular aging and mucus-associated crosstalk. In addition to the interactions between bacteria and the host, we highlight the importance of viruses and nonmodel organisms. Moreover, we discuss current culturing and computational methodologies that allow a deeper understanding of underlying mechanisms controlling the physiology of metaorganisms.


Subject(s)
Host Microbial Interactions/physiology , Microbiota/physiology , Aging , Animals , Computational Biology , Health Status , Humans , Models, Biological , Mucus/microbiology , Mucus/virology , Symbiosis/physiology
14.
Sci Rep ; 8(1): 6156, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29670123

ABSTRACT

Limited insight into eel larvae feeding and diet prevents a holistic overview of the life-cycle of catadromous eels and an understanding of the ecological position of their early stages in marine waters. The present study evaluated the diet of larval European eel, Anguilla anguilla - a critically endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic composition of marine snow aggregates; gut contents being dominated by gene sequences of Hydrozoa taxa (phylum Cnidaria), while snow aggregates were dominated by Crustacea taxa. Pronounced differences between gut contents and marine snow aggregates were also seen in the prokaryotic 16S rRNA gene composition. The findings, in concert with significant abundances of Hydrozoa in the study area, suggest that Hydrozoa plankton are important in the diet of A. anguilla larvae, and that consideration of these organisms would further our understanding of A. anguilla feeding strategies in the oligotrophic Sargasso Sea, which may be important for potential future rearing of A. anguilla larvae in captivity.


Subject(s)
Anguilla/physiology , Animal Feed , Plankton , Anguilla/classification , Animals , Larva , Oceans and Seas , RNA, Ribosomal, 16S
15.
Glob Chang Biol ; 24(3): 1164-1174, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29135067

ABSTRACT

Species establishing outside their natural range, negatively impacting local ecosystems, are of increasing global concern. They often display life-history features characteristic for r-selected populations with fast growth and high reproduction rates to achieve positive population growth rates (r) in invaded habitats. Here, we demonstrate substantially earlier maturation at a 2 orders of magnitude lower body mass at first reproduction in invasive compared to native populations of the comb jelly Mnemiopsis leidyi. Empirical results are corroborated by a theoretical model for competing life-history traits that predicts maturation at the smallest possible size to optimize r, while individual lifetime reproductive success (R0 ), optimized in native populations, is near constant over a large range of intermediate maturation sizes. We suggest that high variability in reproductive tactics in native populations is an underappreciated determinant of invasiveness, acting as substrate upon which selection can act during the invasion process.


Subject(s)
Ctenophora/physiology , Introduced Species , Animals , Ecosystem , Oceans and Seas , Population Growth , Reproduction
16.
Sci Rep ; 7(1): 16419, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180635

ABSTRACT

Many marine invertebrates including ctenophores are capable of extensive body regeneration when injured. However, as for the invasive ctenophore Mnemiopsis leidyi, there is a constant subportion of individuals not undergoing whole body regeneration but forming functionally stable half-animals instead. Yet, the driving factors of this phenomenon have not been addressed so far. This study sheds new light on how differences in food availability affect self-repair choice and regeneration success in cydippid larvae of M. leidyi. As expected, high food availability favored whole-body regeneration. However, under low food conditions half-animals became the preferential self-repair mode. Remarkably, both regenerating and half-animals showed very similar survival chances under respective food quantities. As a consequence of impaired food uptake after injury, degeneration of the digestive system would often occur indicating limited energy storage capacities. Taken together, this indicates that half-animals may represent an alternative energy-saving trajectory which implies self-repair plasticity as an adaptive trade-off between high regeneration costs and low energy storage capacities. We conclude that self-repair plasticity could lead to higher population fitness of ctenophores under adverse conditions such as in ships' ballast water tanks which is postulated to be the major vector source for the species' spreading around the globe.


Subject(s)
Animal Nutritional Physiological Phenomena , Ctenophora/physiology , Regeneration , Wound Healing , Animals , Energy Metabolism , Larva
17.
Biol Lett ; 8(5): 809-12, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22535640

ABSTRACT

The comb jelly Mertensia ovum, widely distributed in Arctic regions, has recently been discovered in the northern Baltic Sea. We show that M. ovum also exists in the central Baltic but that the population consists solely of small-sized larvae (less than 1.6 mm). Despite the absence of adults, eggs were abundant. Experiments revealed that the larvae were reproductively active. Egg production and anticipated mortality rates suggest a self-sustaining population. This is the first account of a ctenophore population entirely recruiting through larval reproduction (paedogenesis). We hypothesize that early reproduction is favoured over growth to compensate for high predation pressure.


Subject(s)
Ctenophora/physiology , Larva/physiology , Animals , Baltic States , DNA/metabolism , Geography , Metamorphosis, Biological , Oceans and Seas , Predatory Behavior , Reproduction , Seasons
18.
Ambio ; 40(6): 638-49, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21954726

ABSTRACT

Greening of the Arctic due to climate warming may provide herbivores with richer food supplies, resulting in higher herbivore densities. In turn, this may cause changes in vegetation composition and ecosystem function. In 1982-1984, we studied the ecology of non-breeding moulting geese in Jameson Land, low Arctic East Greenland. By then, geese consumed most of the graminoid production in available moss fens, and it appeared that the geese had filled up the available habitat. In 2008, we revisited the area and found that the number of moulting geese and the temperature sum for June-July had tripled, while the above-ground biomass in a moss fen ungrazed by geese had more than doubled. In a goose-grazed fen, the overall plant composition was unchanged, but the frequency of graminoids had decreased and the area with dead vegetation and open spots had increased. We suggest that climate warming has lead to increased productivity, allowing for higher numbers of moulting geese. However, the reduction of vegetation cover by grazing may have longer term negative consequences for the number of geese the habitat can sustain.


Subject(s)
Conservation of Natural Resources , Ecosystem , Geese , Global Warming , Wetlands , Animals , Biomass , Climate , Greenland , Plant Development , Population Dynamics
19.
Ambio ; 40(6): 705-16, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21954732

ABSTRACT

Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.


Subject(s)
Climate Change , Ecosystem , Environmental Monitoring , Arctic Regions , Plant Development
20.
PLoS One ; 6(8): e24065, 2011.
Article in English | MEDLINE | ID: mdl-21887373

ABSTRACT

The recent invasion of the comb jelly Mnemiopsis leidyi into northern European waters is of major public and scientific concern. One of the key features making M. leidyi a successful invader is its high fecundity combined with fast growth rates. However, little is known about physiological limitations to its reproduction and consequent possible abiotic restrictions to its dispersal. To evaluate the invasion potential of M. leidyi into the brackish Baltic Sea we studied in situ egg production rates in different regions and at different salinities in the laboratory, representing the salinity gradient of the Baltic Sea. During October 2009 M. leidyi actively reproduced over large areas of the Baltic Sea. Egg production rates scaled with animal size but decreased significantly with decreasing salinity, both in the field (7-29) and in laboratory experiments (6-33). Temperature and zooplankton, i.e. food abundance, could not explain the observed differences. Reproduction rates at conditions representing the Kattegat, south western and central Baltic Sea, respectively, were 2.8 fold higher at the highest salinities (33 and 25) than at intermediate salinities (10 and 15) and 21 times higher compared from intermediate to the lowest salinity tested (6). Higher salinity areas such as the Kattegat, and to a lower extent the south western Baltic, seem to act as source regions for the M. leidyi population in the central Baltic Sea where a self-sustaining population, due to the low salinity, cannot be maintained.


Subject(s)
Ctenophora/physiology , Reproduction , Salinity , Animals , Oceans and Seas , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...