Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
J Chromatogr Sci ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706312

ABSTRACT

Glycyrrhiza glabra is commonly known as licorice. Licorice is the major source of glycyrrhizin. There is no reported stability indicating method for glycyrrhizin in the literature so far. Therefore, it was proposed to develop a stability indicating method and validate the method for glycyrrhizin and its application in G. glabra root extract. Method validation parameters were performed as per the International Council for Harmonization guidelines. The chromatographic separation was achieved on a Zorbax Extended C-18 (250 × 4.6 mm, 5 µm) column. The separation achieved using the mobile phase consisted of 0.1% formic acid in water and acetonitrile in gradient elution. The flow rate was kept at 1 mL/min, and ultraviolet-visible spectroscopy detection was at 250 nm. The average retention time of glycyrrhizin was found to be 7.30 min. Stress degradation studies were performed and confirmed that only acidic degradation has shown a degradation profile of glycyrrhizin up to 40%. The percentage of glycyrrhizin was found to be 0.40% in the G. glabra extract. This may be further explored for commercial applications.

3.
J Pharm Anal ; 14(5): 100919, 2024 May.
Article in English | MEDLINE | ID: mdl-38799236

ABSTRACT

The presence of N-nitroso compounds, particularly N-nitrosamines, in pharmaceutical products has raised global safety concerns due to their significant genotoxic and mutagenic effects. This systematic review investigates their toxicity in active pharmaceutical ingredients (APIs), drug products, and pharmaceutical excipients, along with novel analytical strategies for detection, root cause analysis, reformulation strategies, and regulatory guidelines for nitrosamines. This review emphasizes the molecular toxicity of N-nitroso compounds, focusing on genotoxic, mutagenic, carcinogenic, and other physiological effects. Additionally, it addresses the ongoing nitrosamine crisis, the development of nitrosamine-free products, and the importance of sensitive detection methods and precise risk evaluation. This comprehensive overview will aid molecular biologists, analytical scientists, formulation scientists in research and development sector, and researchers involved in management of nitrosamine-induced toxicity and promoting safer pharmaceutical products.

4.
J Chromatogr A ; 1708: 464358, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37708671

ABSTRACT

Lakadong turmeric has been outlined for its high content of curcuminoids across the globe. Three significant molecular markers are widely present in turmeric viz, curcumin, desmethoxycurcumin, and bisdemethoxycurcumin, and they are present very high amount in Lakadong turmeric. Curcuminoids have been reported for structural and spectrum similarity of 3 to 4 nm (432, 434, and 436 nm, respectively). Current purification methods are based on recrystallisation where it is difficult to get highly pure material and preparative methods associated with tedious separation with high cost. Lakadong turmeric has not been explored commercially since long time. No reports are available in the literature with highly pure reference materials with in-depth characterization data and purity assessment. Curcumin, desmethoxycurcumin, and bisdemethoxycurcumin were characterized using different analytical techniques viz, UV-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Proton Nuclear Magnetic Resonance (1HNMR), Carbon-13 Nuclear Magnetic Resonance (13CNMR), High-Resolution Mass Spectrometry (HR-MS) and Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Purified 3 markers has shown High-Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) purity more than 99.5%. DSC the melting peaks of curcumin, desmethoxycurcumin and bisdemethoxycurcumin were observed at 168 °C, 165 °C, and 210 °C, respectively. These plant-based markers have high commercial potential as reference material for routine Quality Assurance and Quality Control (QAQC) in herbal industries.


Subject(s)
Curcumin , Curcuma , Spectroscopy, Fourier Transform Infrared , Diarylheptanoids , India
5.
Nanomedicine (Lond) ; 17(28): 2133-2144, 2022 12.
Article in English | MEDLINE | ID: mdl-36786368

ABSTRACT

Aim: Amoxapine (AMX) has been reported to be metabolized by CYP3A4 and CYP2D6. Naringin (NG) has been reported to inhibit CYP enzymes. Therefore, the current work was designed to develop AMX solid lipid nanoparticles (AMX-SLNs) and NG-SLNs for better therapeutic performance. Materials & methods: AMX-SLNs and NG-SLNs were prepared and characterized. AMX and NG interactions with CYP450s were studied with molecular docking to rationalize the effectiveness of the combination. Results: AMX-SLNs and NG-SLNs showed nanometric size with a sustained in vitro drug-release profile. NG showed a higher predicted binding affinity for CYP3A4 and CYP2D6, suggesting the potential for inhibition. Conclusion: The developed formulations were thoroughly characterized along with molecular docking data indicating promising AMX and NG combinations that may show good therapeutic activity.


Subject(s)
Amoxapine , Nanoparticles , Molecular Docking Simulation , Cytochrome P-450 CYP2D6 , Cytochrome P-450 CYP3A , Lipids/chemistry , Nanoparticles/chemistry , Particle Size , Drug Carriers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL