Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Med ; 30(3): 762-771, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321218

ABSTRACT

Among the 'most wanted' targets in cancer therapy is the oncogene MYC, which coordinates key transcriptional programs in tumor development and maintenance. It has, however, long been considered undruggable. OMO-103 is a MYC inhibitor consisting of a 91-amino acid miniprotein. Here we present results from a phase 1 study of OMO-103 in advanced solid tumors, established to examine safety and tolerability as primary outcomes and pharmacokinetics, recommended phase 2 dose and preliminary signs of activity as secondary ones. A classical 3 + 3 design was used for dose escalation of weekly intravenous, single-agent OMO-103 administration in 21-day cycles, encompassing six dose levels (DLs). A total of 22 patients were enrolled, with treatment maintained until disease progression. The most common adverse events were grade 1 infusion-related reactions, occurring in ten patients. One dose-limiting toxicity occurred at DL5. Pharmacokinetics showed nonlinearity, with tissue saturation signs at DL5 and a terminal half-life in serum of 40 h. Of the 19 patients evaluable for response, 12 reached the predefined 9-week time point for assessment of drug antitumor activity, eight of those showing stable disease by computed tomography. One patient defined as stable disease by response evaluation criteria in solid tumors showed a 49% reduction in total tumor volume at best response. Transcriptomic analysis supported target engagement in tumor biopsies. In addition, we identified soluble factors that are potential pharmacodynamic and predictive response markers. Based on all these data, the recommended phase 2 dose was determined as DL5 (6.48 mg kg-1).ClinicalTrials.gov identifier: NCT04808362 .


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology
2.
Genes Dev ; 37(7-8): 303-320, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37024284

ABSTRACT

MYC's key role in oncogenesis and tumor progression has long been established for most human cancers. In melanoma, its deregulated activity by amplification of 8q24 chromosome or by upstream signaling coming from activating mutations in the RAS/RAF/MAPK pathway-the most predominantly mutated pathway in this disease-turns MYC into not only a driver but also a facilitator of melanoma progression, with documented effects leading to an aggressive clinical course and resistance to targeted therapy. Here, by making use of Omomyc, the most characterized MYC inhibitor to date that has just successfully completed a phase I clinical trial, we show for the first time that MYC inhibition in melanoma induces remarkable transcriptional modulation, resulting in severely compromised tumor growth and a clear abrogation of metastatic capacity independently of the driver mutation. By reducing MYC's transcriptional footprint in melanoma, Omomyc elicits gene expression profiles remarkably similar to those of patients with good prognosis, underlining the therapeutic potential that such an approach could eventually have in the clinic in this dismal disease.


Subject(s)
Melanoma , Humans , Prognosis , Melanoma/genetics , Signal Transduction , Carcinogenesis , Cell Transformation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism
3.
Cancer Res Commun ; 2(2): 110-130, 2022 02.
Article in English | MEDLINE | ID: mdl-36860495

ABSTRACT

MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance: While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line , Protein Binding , Triple Negative Breast Neoplasms/drug therapy , Proto-Oncogene Proteins c-myc
4.
Life Sci Alliance ; 4(5)2021 05.
Article in English | MEDLINE | ID: mdl-33653688

ABSTRACT

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Subject(s)
Adenoma, Islet Cell/physiopathology , Carcinogenesis/metabolism , Frizzled Receptors/metabolism , Adenoma, Islet Cell/metabolism , Animals , Cell Movement , Cell Proliferation , Female , Frizzled Receptors/genetics , Frizzled Receptors/physiology , Genes, myc/genetics , Genes, myc/physiology , Islets of Langerhans/metabolism , Male , Mice , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
5.
Cancer Res ; 80(2): 276-290, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31694906

ABSTRACT

The tumor-promoting fibrotic stroma rich in tumor-associated fibroblasts (TAF) is drawing increased therapeutic attention. Intriguingly, a trial with the antifibrotic drug nintedanib in non-small cell lung cancer reported clinical benefits in adenocarcinoma (ADC) but not squamous cell carcinoma (SCC), even though the stroma is fibrotic in both histotypes. Likewise, we reported that nintedanib inhibited the tumor-promoting fibrotic phenotype of TAFs selectively in ADC. Here we show that tumor fibrosis is actually higher in ADC-TAFs than SCC-TAFs in vitro and patient samples. Mechanistically, the reduced fibrosis and nintedanib response of SCC-TAFs was associated with increased promoter methylation of the profibrotic TGFß transcription factor SMAD3 compared with ADC-TAFs, which elicited a compensatory increase in TGFß1/SMAD2 activation. Consistently, forcing global DNA demethylation of SCC-TAFs with 5-AZA rescued TGFß1/SMAD3 activation, whereas genetic downregulation of SMAD3 in ADC-TAFs and control fibroblasts increased TGFß1/SMAD2 activation, and reduced their fibrotic phenotype and antitumor responses to nintedanib in vitro and in vivo. Our results also support that smoking and/or the anatomic location of SCC in the proximal airways, which are more exposed to cigarette smoke particles, may prime SCC-TAFs to stronger SMAD3 epigenetic repression, because cigarette smoke condensate selectively increased SMAD3 promoter methylation. Our results unveil that the histotype-specific regulation of tumor fibrosis in lung cancer is mediated through differential SMAD3 promoter methylation in TAFs and provide new mechanistic insights on the selective poor response of SCC-TAFs to nintedanib. Moreover, our findings support that patients with ADC may be more responsive to antifibrotic drugs targeting their stromal TGFß1/SMAD3 activation. SIGNIFICANCE: This study implicates the selective epigenetic repression of SMAD3 in SCC-TAFs in the clinical failure of nintedanib in SCC and supports that patients with ADC may benefit from antifibrotic drugs targeting stromal TGFß1/SMAD3.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , Indoles/pharmacology , Lung Neoplasms/drug therapy , Smad3 Protein/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Aged , Aged, 80 and over , Animals , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Cohort Studies , DNA Methylation/genetics , Epigenetic Repression , Female , Fibrosis , Gene Expression Regulation, Neoplastic , Humans , Indoles/therapeutic use , Lung/cytology , Lung/drug effects , Lung/pathology , Lung/surgery , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Mice , Middle Aged , Pneumonectomy , Promoter Regions, Genetic/genetics , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Tissue Array Analysis , Xenograft Model Antitumor Assays
6.
Adv Sci (Weinh) ; 6(18): 1900849, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31559131

ABSTRACT

Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44-targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.

7.
Curr Opin Pharmacol ; 47: 133-140, 2019 08.
Article in English | MEDLINE | ID: mdl-31048179

ABSTRACT

Peptides and proteins bear an extraordinary therapeutic potential to effectively and selectively target many components of cells currently considered undruggable. However, their intracellular delivery remains a critical challenge. Cell penetrating peptides and protein domains (CPPs) can be employed to translocate therapeutic polypeptides through the cellular membrane. Here, we describe examples of linear peptides and proteins, byciclic macropeptides and nanobodies that target key players in cancer development, with intrinsic and engineered cell penetrating ability. We also describe current solutions to the main challenges to their clinical viability.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell-Penetrating Peptides/therapeutic use , Neoplasms/drug therapy , Proteins/therapeutic use , Humans
8.
Sci Transl Med ; 11(484)2019 03 20.
Article in English | MEDLINE | ID: mdl-30894502

ABSTRACT

Inhibiting MYC has long been considered unfeasible, although its key role in human cancers makes it a desirable target for therapeutic intervention. One reason for its perceived undruggability was the fear of catastrophic side effects in normal tissues. However, we previously designed a dominant-negative form of MYC called Omomyc and used its conditional transgenic expression to inhibit MYC function both in vitro and in vivo. MYC inhibition by Omomyc exerted a potent therapeutic impact in various mouse models of cancer, causing only mild, well-tolerated, and reversible side effects. Nevertheless, Omomyc has been so far considered only a proof of principle. In contrast with that preconceived notion, here, we show that the purified Omomyc mini-protein itself spontaneously penetrates into cancer cells and effectively interferes with MYC transcriptional activity therein. Efficacy of the Omomyc mini-protein in various experimental models of non-small cell lung cancer harboring different oncogenic mutation profiles establishes its therapeutic potential after both direct tissue delivery and systemic administration, providing evidence that the Omomyc mini-protein is an effective MYC inhibitor worthy of clinical development.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Peptide Fragments/pharmacology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/therapeutic use , DNA/metabolism , Disease Models, Animal , E-Box Elements/genetics , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice, Inbred C57BL , Peptide Fragments/administration & dosage , Peptide Fragments/pharmacokinetics , Peptide Fragments/therapeutic use , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-myc/administration & dosage , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/pharmacokinetics , Proto-Oncogene Proteins c-myc/pharmacology , Proto-Oncogene Proteins c-myc/therapeutic use
9.
Oncotarget ; 9(27): 18734-18746, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29721157

ABSTRACT

Effectively treating KRAS-driven tumors remains an unsolved challenge. The inhibition of downstream signaling effectors is a way of overcoming the issue of direct targeting of mutant KRAS, which has shown limited efficacy so far. Bromodomain and Extra-Terminal (BET) protein inhibition has displayed anti-tumor activity in a wide range of cancers, including KRAS-driven malignancies. Here, we preclinically evaluate the effect of BET inhibition making use of a new BET inhibitor, BAY 1238097, against Pancreatic Ductal Adenocarcinoma (PDAC) and Non-Small Cell Lung Cancer (NSCLC) models harboring RAS mutations both in vivo and in vitro. Our results demonstrate that BET inhibition displays significant therapeutic impact in genetic mouse models of KRAS-driven PDAC and NSCLC, reducing both tumor area and tumor grade. The same approach also causes a significant reduction in cell number of a panel of RAS-mutated human cancer cell lines (8 PDAC and 6 NSCLC). In this context, we demonstrate that while BET inhibition by BAY 1238097 decreases MYC expression in some cell lines, at least in PDAC cells its anti-tumorigenic effect is independent of MYC regulation. Together, these studies reinforce the use of BET inhibition and prompt the optimization of more efficient and less toxic BET inhibitors for the treatment of KRAS-driven malignancies, which are in urgent therapeutic need.

11.
Oncotarget ; 7(21): 31014-28, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27105536

ABSTRACT

Small cell lung cancer (SCLC) is the most aggressive type of lung cancer with high mortality. One of the MYC family genes, MYC, MYCL or MYCN, is amplified in ~20% of the SCLCs; therefore, MYC proteins are potential therapeutic targets in SCLC patients. We investigated the therapeutic impact of Omomyc, a MYC dominant negative, in a panel of SCLC cell lines. Strikingly, Omomyc suppressed the growth of all tested cell lines by inducing cell cycle arrest and/or apoptosis. Induction of G1 arrest by Omomyc was found to be dependent on the activation of CDKN1A, in part, through the TP73 pathway. Our results strongly indicate that SCLC cells carrying amplification of MYC, MYCL or MYCN are addicted to MYC function, suggesting that MYC targeting would be an efficient therapeutic option for SCLC patients.


Subject(s)
Lung Neoplasms/genetics , Lung Neoplasms/therapy , Peptide Fragments/biosynthesis , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/biosynthesis , Retinoblastoma Binding Proteins/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/therapy , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Cycle Checkpoints/genetics , Cell Death/genetics , Cell Growth Processes/genetics , Gene Amplification , Gene Silencing , Genes, p53 , Genetic Therapy/methods , HEK293 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Targeted Therapy , Peptide Fragments/genetics , Proto-Oncogene Proteins c-myc/genetics , Retinoblastoma Binding Proteins/metabolism , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Transfection , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Cancer Res ; 75(8): 1675-81, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25878147

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense stromal fibroinflammatory reaction that is a major obstacle to effective therapy. The desmoplastic stroma comprises many inflammatory cells, in particular mast cells as key components of the PDAC microenvironment, and such infiltration correlates with poor patient outcome. Indeed, it has been hypothesized that stromal ablation is critical to improve clinical response in patients with PDAC. Ibrutinib is a clinically approved Bruton's tyrosine kinase inhibitor that inhibits mast cells and tumor progression in a mouse model of ß-cell tumorigenesis. Here, we show that ibrutinib is highly effective at limiting the growth of PDAC in both transgenic mouse and patient-derived xenograft models of the disease. In these various experimental settings, ibrutinib effectively diminished fibrosis, extended survival, and improved the response to clinical standard-of-care therapy. Our results offer a preclinical rationale to immediately evaluate the clinical efficacy of ibrutinib in patients with PDAC.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/therapeutic use , Pancreatic Neoplasms/drug therapy , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Adenine/analogs & derivatives , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Female , Fibrosis/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/pathology , Piperidines , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
13.
Nat Commun ; 5: 4632, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25130259

ABSTRACT

Gliomas are the most common primary tumours affecting the adult central nervous system and respond poorly to standard therapy. Myc is causally implicated in most human tumours and the majority of glioblastomas have elevated Myc levels. Using the Myc dominant negative Omomyc, we previously showed that Myc inhibition is a promising strategy for cancer therapy. Here, we preclinically validate Myc inhibition as a therapeutic strategy in mouse and human glioma, using a mouse model of spontaneous multifocal invasive astrocytoma and its derived neuroprogenitors, human glioblastoma cell lines, and patient-derived tumours both in vitro and in orthotopic xenografts. Across all these experimental models we find that Myc inhibition reduces proliferation, increases apoptosis and remarkably, elicits the formation of multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in the proficient division of glioma cells.


Subject(s)
Astrocytoma/pathology , Brain Neoplasms/pathology , Glioblastoma/pathology , Glioma/pathology , Mitosis/physiology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Animals , Apoptosis/physiology , Astrocytoma/physiopathology , Astrocytoma/therapy , Brain Neoplasms/physiopathology , Brain Neoplasms/therapy , Cell Line, Tumor , Cell Proliferation/physiology , Disease Models, Animal , Glioblastoma/physiopathology , Glioblastoma/therapy , Glioma/physiopathology , Glioma/therapy , Heterografts , Humans , Mice , Mice, Transgenic , Protein Tyrosine Phosphatase, Non-Receptor Type 1/physiology , Proto-Oncogene Proteins c-myc/physiology , Ubiquitin-Activating Enzymes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...