Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Water Res ; 217: 118382, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35413560

ABSTRACT

There is significant debate about why less than half of European rivers and streams are in good ecological status, despite decades of intense regulatory efforts. Of the multiple stressors that are recognized as potential contributors to stream degradation, we focus on discharge from 26,500 European wastewater treatment plants (WWTPs). We tested the hypothesis that stream ecological status degradation across Europe is related to the local intensity of wastewater discharge, with an expected stream-order (ω) dependence based on the scaling laws that govern receiving stream networks. We found that ecological status in streams (ω≤3) declined consistently with increasing urban wastewater discharge fraction of stream flow (UDF) across river types and basins. In contrast, ecological status in larger rivers (ω≥4) was not related to UDF. From a continental-scale logistic regression model (accuracy 86%) we identified an ecologically critical threshold UDF = 6.5% ± 0.5. This is exceeded by more than one third of WWTPs in Europe, mostly discharging into smaller streams. Our results suggest that new receiving water-specific strategies for wastewater management are needed to achieve good ecological status in smaller streams.


Subject(s)
Ecosystem , Water Purification , Environmental Monitoring/methods , Rivers , Wastewater
2.
Harmful Algae ; 98: 101900, 2020 09.
Article in English | MEDLINE | ID: mdl-33129457

ABSTRACT

Harmful algal blooms (HABs) threaten coastal ecological systems, public health, and local economies, but the complex physical, chemical, and biological processes that culminate in HABs vary by locale and are often poorly understood. Despite broad recognition that cultural eutrophication may exacerbate nearshore bloom events, the association is typically not linear and is often difficult to quantify. Off the Gulf Coast of Florida, Karenia brevis blooms initiate in the open waters of the Gulf of Mexico, and advection of cells supplies nearshore blooms. However, past work has struggled to describe the relationship between terrestrial nutrient runoff and bloom maintenance near the Gulf Coast. This study applied a novel nonlinear time series (NLTS) analytical framework to investigate whether nearshore bloom dynamics observed near Charlotte Harbor, FL were causally and systematically driven by terrestrially sourced inputs of nitrogen, phosphorus, and freshwater between 2012 and 2018. Singular spectrum analysis (SSA) isolated low-dimensional, deterministic signals in K. brevis log10-density dynamics and in the dynamics of nine of 10 candidate drivers. The predominantly seasonal K. brevis signal was strong, explaining 77.6% of the total variance in the observed time series. Causal tests with convergent cross-mapping provided evidence that nitrogen concentrations measured at the discharge point of the Caloosahatchee River systematically influenced K. brevis bloom dynamics. However, further causal testing failed to link these nitrogen dynamics to an upstream basin, possibly due to data limitations. The results support the hypothesis that anthropogenic nitrogen runoff facilitated the growth of K. brevis blooms near Charlotte Harbor and suggest that bloom events would be mitigated by nitrogen source and transport controls within the Caloosahatchee and/or Kissimmee River basins. More broadly, this work demonstrates that management-relevant causal inferences into the drivers of HABs may be drawn from available monitoring records.


Subject(s)
Dinoflagellida , Nitrogen , Florida , Gulf of Mexico , Seasons
3.
Sci Rep ; 10(1): 14696, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895428

ABSTRACT

The connectivity among distributed wetlands is critical for aquatic habitat integrity and to maintain metapopulation biodiversity. Here, we investigated the spatiotemporal fluctuations of wetlandscape connectivity driven by stochastic hydroclimatic forcing, conceptualizing wetlands as dynamic habitat nodes in dispersal networks. We hypothesized that spatiotemporal hydrologic variability influences the heterogeneity in wetland attributes (e.g., size and shape distributions) and wetland spatial organization (e.g., gap distances), in turn altering the variance of the dispersal network topology and the patterns of ecological connectivity. We tested our hypotheses by employing a DEM-based, depth-censoring approach to assess the eco-hydrological dynamics in a synthetically generated landscape and three representative wetlandscapes in the United States. Network topology was examined for two end-member connectivity measures: centroid-to-centroid (C2C), and perimeter-to-perimeter (P2P), representing the full range of within-patch habitat preferences. Exponentially tempered Pareto node-degree distributions well described the observed structural connectivity of both types of networks. High wetland clustering and attribute heterogeneity exacerbated the differences between C2C and P2P networks, with Pareto node-degree distributions emerging only for a limited range of P2P configuration. Wetlandscape network topology and dispersal strategies condition species survival and biodiversity.

4.
Sci Total Environ ; 694: 133765, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31756814

ABSTRACT

Wetlands are embedded in landscapes in fractal spatial patterns, and are characterized by highly dynamic, interlinked hydrological, biogeochemical, and ecological functions. We propose here a stochastic approach to evaluate and predict the spatiotemporal hydrologic variability of wetlands at landscape scale (100 km2). Stochastic hydro-climatic forcing (daily rainfall and evapotranspiration) and the landscape topographic setting (spatial structure of wetlands within the landscape) are key drivers of wetland eco-hydrologic functionality. The novelty of our approach lies in the quantification of the hydrological dynamics for all wetlands distributed in a given landscape, and in linking stochasticity of hydroclimatic forcing and ecologically meaningful wetland network metrics. We applied the modeling framework to investigate daily hydrologic dynamics in six landscapes across the U.S. that span gradients of hydroclimate and abundance of wetlands. We assess landscape-scale patterns using four key wetland hydrological attributes that have significance in terms of aquatic habitat suitability and dispersal: (1) Abundance (2) Diversity (3) Persistence, and (4) Accessibility. We observe that the hydrologic responses of each of the six landscapes are driven by the interactions between regional stochastic hydro-climatic forcing and landscape topographic setting. Despite differences in these features, similar scaling relations define diversity (area distributions) and accessibility (separation-distance distributions). Persistence of hydrologic regimes, defined by duration of inundation above thresholds, was least in more-arid settings, and higher in humid settings, consistent with intuitive understanding. These results can support assessments of the spatiotemporal variability of ecohydrological attributes in diverse wetlandscapes, including aquatic species dispersal and habitat suitability for unique flora and fauna.

5.
Sci Total Environ ; 689: 21-30, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31260896

ABSTRACT

Frequent and severe disruptions of natural river flows associated with human activities significantly alter hydrological connectivity in large river networks, with deleterious effects on fish diversity. Understanding the relationship between fish diversity and river network connectivity is fundamental to ensuring species persistence, ecosystem integrity, and human well-being. Here, we provide a review of the mechanisms by which river network connectivity (RNC) affects fish diversity. We review the relationships between forms, systems and types of RNC and fish diversity, based on more than 100 previous studies. In summary, sustaining RNC promotes fish diversity in longitudinal and lateral axes, and species sorting, dispersal dynamics, and habitat availability are the main factors driving the distribution of fish diversity, followed by nutrition and trophic dynamics. Our work highlights the effects of RNC on fish diversity, and provides a mechanistic understanding of how RNC affects fish diversity across river basins, thus providing scientific guidance for protecting fish biodiversity and improving the health of river network ecosystems.


Subject(s)
Biodiversity , Ecosystem , Fishes , Rivers , Animals , Hydrology
6.
J Environ Qual ; 48(3): 709-716, 2019 May.
Article in English | MEDLINE | ID: mdl-31180422

ABSTRACT

This work enhances our understanding of catchment-scale N budgets by demonstrating the modification and application of a simple method for direct in situ measurements of vadose zone nitrate leaching and attenuation. We developed a soil passive flux meter (SPFM) to measure solute leaching based on a modified design of ion-exchange resin columns, and we tested the design in numerical simulations, laboratory experiments, plot-scale field experiments, and a catchment-scale field deployment. Our design minimized flow divergence around the resin column to attain nearly 100% capture of surface applied tracers in plot- and catchment-scale deployments. We found that mixing resin with native soil and extending the column height 10 cm above the resin layer minimized divergence of soil water around the column, resulting in a field-measured convergence factor (χ) of 1.3 that was consistent with numerical simulations. For catchment-scale testing, SPFMs were used at nine sites in three dominant land uses (crop, pasture, and turf) with known N inputs in two deployments, one during the 4-mo wet season and an additional set during the 8-mo dry season, to obtain integral annual measures of soil nitrate fluxes. In situ measured nitrate leaching determined from the SPFMs was positively correlated with known N inputs ( = 0.55, < 0.05) and attenuation averaged 67% (± 24% SD) of inputs across all sites. Although N inputs explain a large portion of the variability, our results emphasize the importance of both inter- and intra-land use variability in landscape-scale N budgets.


Subject(s)
Soil , Water Pollutants, Chemical , Nitrates , Seasons , Water
7.
Sci Total Environ ; 667: 769-779, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30851610

ABSTRACT

Phosphorus inputs to many rivers have been reduced in recent decades to mitigate the damaging effects of eutrophication. However, reductions in total phosphorus (TP) inputs rarely correspond with ecological improvements of the river ecosystem. We analyzed a unique weekly long-term data set ranging from 1966 to 2013, covering seven monitoring sites in the Ruhr River in Germany. We identified the relative importance of different TP sources, quantified long-term trajectories of degradation and recovery, including the dynamics of TP retention, and assessed the response of chlorophyll-a (Chl-a) to increasing and decreasing TP concentrations along the whole river gradient. We found that the decline of TP loads at the beginning of the 1980s was dominantly triggered by a reduction of point sources. The cumulative TP retention capacity increased along the river gradient, increasing from effectively zero in the upstream section, to 26% and 36% of TP input in the upper midstream and lower downstream section. This pattern is consistent with higher prevalence of impoundments and weirs downstream, indicating that TP retention is likely associated with sedimentation posing a potential risk due to remobilization of legacy phosphorus. Degradation and recovery pathways differ from upstream to downstream. Along the river continuum we found three distinct types of reversible trajectories: 1. instream storage only during the recovery phase (upstream only); 2. instream storage in both degradation and recovery phases, but with significantly different characteristics depending on TP input load (midstream only); 3. higher instream storage during the recovery phase (downstream only). While in-stream TP loads may recover rapidly, the ecological response to altered nutrient inputs can be associated with considerable time-lags and decouplings between Chl-a and TP concentrations. Therefore, river systems may not return to historically good ecological status solely from massive nutrient reduction, but may also require other management activities.

8.
J Contam Hydrol ; 221: 127-134, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30777404

ABSTRACT

Two important factors that affect groundwater contaminant persistence are the temporal pattern of contaminant source depletion and solute diffusion into and out of aquitards. This study provides a framework to evaluate the relative importance of these effects on contaminant persistence, with emphasis on the importance of thin aquitards. We developed one-dimensional (1D) analytical solutions for forward and back diffusion in a finite domain with a no flux boundary using the method of images and demonstrated their applicability to measured data from three well-controlled laboratory diffusion experiments with exponentially depleting sources. We used both in situ aquitard solute concentrations and aquifer breakthrough curves for sorbing and non-sorbing solutes. The finite-domain no flux boundary solutions showed better agreement with measured data than was available with semi-infinite approaches, with increasing discrepancy for dimensionless relative diffusion length scale beyond a critical threshold value (Zd > 0.7). We also used a mass balance to demonstrate that the temporal pattern of contaminant source depletion controls the duration of solute mass accumulation in the aquitard, as well as the total solute mass release back into the aquifer. Lower rates of source depletion result in a longer period of mass accumulation in the aquitard and later back diffusion initiation time. The amount of solute mass stored in the aquitard increases with longer loading duration, thereby contributing to overall longer contaminant persistence in aquifers. This study entails widespread implications for anthropogenic waste and contamination sites, which are all dependent on efficient and cost-effective contaminant management strategies.


Subject(s)
Groundwater , Water Pollutants, Chemical , Diffusion , Models, Theoretical , Permeability , Solutions
9.
Nat Commun ; 10(1): 430, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683855

ABSTRACT

Human societies evolved alongside rivers, but how has the relationship between human settlement locations and water resources evolved over time? We conducted a dynamic analysis in the conterminous US to assess the coevolution of humans and water resources from 1790 to 2010. Here we show that humans moved closer to major rivers in pre-industrial periods but have moved farther from major rivers after 1870, demonstrating the dynamics of human reliance on rivers for trade and transport. We show that humans were preferentially attracted to areas overlying major aquifers since industrialization due to the emergent accessibility of groundwater in the 20th century. Regional heterogeneity resulted in diverse trajectories of settlement proximity to major rivers, with the attractiveness of rivers increasing in arid regions and decreasing in humid areas. Our results reveal a historical coevolution of human-water systems, which could inform water management and contribute to societal adaptation to future climate change.


Subject(s)
Groundwater/analysis , Models, Statistical , Population Dynamics/statistics & numerical data , Water Resources/supply & distribution , Climate Change , Conservation of Natural Resources , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Population Dynamics/history , Rivers , United States
10.
Sci Total Environ ; 697: 134145, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-32380617

ABSTRACT

We employed the well-established Horton-Strahler, hierarchical, stream-order (ω) scheme to investigate scaling of nutrient loads (P and N) from ~845 wastewater treatment plants (WWTPs) distributed along the river network in urbanized Weser River, the largest national basin in Germany (~46K km2; ~8.4 million population). We estimated hydrologic and water quality impacts at the reach- and basin-scales, at two steady river discharge conditions (median flow, QR50; low-flow, QR90). Of the five WWTPs class-sizes (1 ≤ k ≤ 5), ~68% discharge to small low-order streams (ω < 3). We found large variations in capacity to dilute WWTP nutrient loads because of variability in (1) treated wastewater discharge (QU) within and among different class-sizes, and (2) river discharge (QR) within low-order streams (ω < 3) resulting from differences in drainage areas. For QR50, reach-scale water quality impairment assessed by nutrient concentration was likely at 136 (~16%) locations for P and 15 locations (~2%) for N. About 90% of these locations were lower-order streams (ω < 3). At QR50 and only with dilution, basin-scale cumulative nutrient loads from multiple upstream WWTPs increase impaired locations to 266 (~32% of total) for P. Considering in-stream uptake decreased P-impaired streams to 225 (~27%), suggesting the dominant role of dilution in the Weser River basin. Role of in-stream uptake diminished along the flow paths, while dilution in larger streams (4 ≤ ω ≤ 7) minimizes the impact of WWTP loads. Under QR90 conditions [(QR50/QR90) ~ 2.5], water quality impaired locations will likely double for the basin-scale analyses. Long-term water quality data suggested that diffuse sources are the primary contributors for water quality impairments in large streams. Our data-modeling synthesis approach is transferable to other urbanized river basins and extends understanding of point source impacts on water quality across spatial scales.

11.
J Environ Qual ; 47(6): 1546-1553, 2018 11.
Article in English | MEDLINE | ID: mdl-30512054

ABSTRACT

Models help to describe and predict complex processes and scenarios that are difficult to understand or measure in environmental management systems. Thus, model simulations were performed (i) to calibrate HYDRUS-2D for water and solute movement as a possible decision support system for Candler and Immokalee fine sand using data from microsprinkler and drip irrigation methods, (ii) to validate the performance of HYDRUS-2D using field data of microsprinkler and drip irrigation methods, and (iii) to investigate Br, NO, and water movement using annual or seasonal weather data and variable fertigation scenarios. The model showed reasonably good agreement between measured and simulated values for soil water content ( = 0.87-1.00), Br ( = 0.63-0.96), NO-N ( = 0.66-0.98), P ( = 0.25-0.78), and K ( = 0.44-0.99) movement. The model could be successfully used for scheduling irrigation and predicting nutrient leaching for both microsprinkler and drip irrigation systems on Florida's sandy soils.


Subject(s)
Environmental Monitoring/methods , Models, Chemical , Nitrogen/analysis , Phosphorus/analysis , Soil Pollutants/analysis , Water Movements , Water Pollutants, Chemical/analysis , Agricultural Irrigation , Agriculture/statistics & numerical data , Fertilizers , Florida , Soil
12.
Sci Data ; 5: 180067, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29688219

ABSTRACT

Where do people live, and how has this changed over timescales of centuries? High-resolution spatial information on historical human population distribution is of great significance to understand human-environment interactions and their temporal dynamics. However, the complex relationship between population distribution and various influencing factors coupled with limited data availability make it a challenge to reconstruct human population distribution over timescales of centuries. This study generated 1-km decadal population maps for the conterminous US from 1790 to 2010 using parsimonious models based on natural suitability, socioeconomic desirability, and inhabitability. Five models of increasing complexity were evaluated. The models were validated with census tract and county subdivision population data in 2000 and were applied to generate five sets of 22 historical population maps from 1790-2010. Separating urban and rural areas and excluding non-inhabitable areas were the most important factors for improving the overall accuracy. The generated gridded population datasets and the production and validation methods are described here.


Subject(s)
Population Dynamics , Humans , Rural Population , United States , Urban Population
13.
J Contam Hydrol ; 202: 47-58, 2017 07.
Article in English | MEDLINE | ID: mdl-28554827

ABSTRACT

Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.


Subject(s)
Groundwater/chemistry , Hydrology/methods , Water Pollutants, Chemical/analysis , Connecticut , Delaware , Diffusion , Environmental Monitoring/methods , Florida , Groundwater/analysis , Interrupted Time Series Analysis , Permeability , Water Pollutants, Chemical/chemistry
14.
Nat Geosci ; 10(11): 809-815, 2017.
Article in English | MEDLINE | ID: mdl-30079098

ABSTRACT

Governments worldwide do not adequately protect their limited freshwater systems and therefore place freshwater functions and attendant ecosystem services at risk. The best available scientific evidence compels enhanced protections for freshwater systems, especially for impermanent streams and wetlands outside of floodplains that are particularly vulnerable to alteration or destruction. New approaches to freshwater sustainability - implemented through scientifically informed adaptive management - are required to protect freshwater systems through periods of changing societal needs. One such approach introduced in the US in 2015 is the Clean Water Rule, which clarified the jurisdictional scope for federally protected waters. However, within hours of its implementation litigants convinced the US Court of Appeals for the Sixth Circuit to stay the rule, and the subsequently elected administration has now placed it under review for potential revision or rescission. Regardless of its outcome at the federal level, policy and management discussions initiated by the propagation of this rare rulemaking event have potential far-reaching implications at all levels of government across the US and worldwide. At this timely juncture, we provide a scientific rationale and three policy options for all levels of government to meaningfully enhance protection of these vulnerable waters. A fourth option, a 'do-nothing' approach, is wholly inconsistent with the well-established scientific evidence of the importance of these vulnerable waters.

15.
J Contam Hydrol ; 193: 54-62, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27636989

ABSTRACT

Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Movements , Water Pollutants, Chemical/chemistry , Water Pollution, Chemical/analysis , Diffusion , Kaolin/chemistry , Models, Chemical , Permeability , Solutions , Water Pollutants, Chemical/analysis
16.
Proc Natl Acad Sci U S A ; 113(8): 1978-86, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26858425

ABSTRACT

Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.


Subject(s)
Models, Biological , Wetlands , North America
17.
J Environ Radioact ; 140: 42-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25461514

ABSTRACT

Laboratory scale rhizofiltration experiments were performed to investigate uranium and cesium accumulation in bean (Phaseolus vulgaris L. var. vulgaris) and its potential for treatment of uranium contaminated groundwater. During 72 h of rhizofiltration, the roots of the bean accumulated uranium and cesium to concentrations 317-1019 times above the initial concentrations, which ranged from 100 to 700 µg l(-1) in artificially contaminated solutions. When the pH of the solution was adjusted to 3, the ability to accumulate uranium was 1.6 times higher than it was for solutions of pH 7 and pH 9. With an initial uranium concentration of 240 µg l(-1) in genuine groundwater at pH 5, the bean reduced the uranium concentration by 90.2% (to 23.6 µg l(-1)) within 12 h and by 98.9% (to 2.8 µg l(-1)) within 72 h. A laboratory scale continuous clean-up system reduced uranium concentrations from 240 µg l(-1) to below 10 µg l(-1) in 56 h; the whole uranium concentration in the bean roots during system operation was more than 2600 µg g(-1) on a dry weight basis. Using SEM and EDS analyses, the uranium removal in solution at pH 7 was determined based on adsorption and precipitation on the root surface in the form of insoluble uranium compounds. The present results demonstrate that the rhizofiltration technique using beans efficiently removes uranium and cesium from groundwater as an eco-friendly and cost-effective method.


Subject(s)
Cesium/metabolism , Phaseolus/metabolism , Uranium/metabolism , Groundwater/analysis
18.
Environ Sci Technol ; 49(1): 415-22, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25478850

ABSTRACT

Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers.


Subject(s)
Groundwater , Models, Theoretical , Water Pollution , Aluminum Silicates , Clay , Diffusion , Kaolin , Permeability , Solutions
20.
J Contam Hydrol ; 169: 75-89, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25115451

ABSTRACT

Simplified analytical solutions, developed as source strength functions (SSFs), are capable of describing the temporal dissolution of nonaqueous phase liquids in groundwater, which is useful for predicting source longevity and can serve as a guide for remedial activities. Here, SSF parameters were estimated by fitting enhanced aqueous dissolution data from a flow cell consisting of three injection and four extraction wells to analytical dissolution models (power law model (PLM) and equilibrium streamtube model (EST)) at a trichloroethene (TCE) contaminated site, Alameda Point, California. Both the PLM and the EST model were able to characterize the observed aqueous TCE dissolution during enhanced water flooding. Additional field activities conducted at the site included soil core collection, a recirculated partitioning tracer test, passive flux meter transects, and push-pull tracer tests. The additional site characterization data were used to independently estimate the observed SSF parameters using information such as the TCE mass, distribution and porous media heterogeneity. The exponential decay model (a subset of the PLM) accurately predicted the enhanced dissolution, likely because the site was significantly aged (most of the mass in the plume rather than in the source zone) or middle stage, and the mass in the source zone could be approximately estimated. The EST tracer-based model, when combined with data from the recirculated partitioning tracer test, soil cores, and the push-pull tracer test, was capable of accurately predicting the observed aqueous dissolution. The mass in the source zone and the fraction of contaminated flowpaths were the most important site characteristics, requiring the greatest accuracy to predict aqueous dissolution. Establishing steady state dissolution was essential to provide a more accurate estimate of the fraction contaminated and high resolution data from soil cores in the source zone were needed to estimate the mass present.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Pollutants, Chemical/analysis , California , Models, Theoretical , Trichloroethylene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...