Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38744292

ABSTRACT

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Subject(s)
Acetylcholine , Intestinal Mucosa , Animals , Acetylcholine/metabolism , Mice , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Choline O-Acetyltransferase/metabolism , Interleukin-13/metabolism , Interleukin-13/immunology , Mice, Knockout , Mice, Inbred C57BL , Helminthiasis/immunology , Helminthiasis/parasitology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Immunity, Innate , Nematospiroides dubius/immunology , Tuft Cells
2.
Cells ; 12(20)2023 10 18.
Article in English | MEDLINE | ID: mdl-37887321

ABSTRACT

Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.


Subject(s)
Helminths , Parasites , Parasitic Diseases , Animals , Intestinal Mucosa/metabolism , Parasitic Diseases/metabolism , Immunity
3.
Proc Natl Acad Sci U S A ; 120(25): e2219431120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307458

ABSTRACT

Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation. Initial alterations in Paneth cells, as frequently observed in obese and inflammatorybowel diseases patients, cause a mild remodeling of microbiota, with amplification of succinate-producing species. SucnR1-dependent activation of epithelial tuft cells triggers a type 2 immune response that, in turn, aggravates the Paneth cell defaults, promoting dysbiosis and chronic inflammation. We thus reveal a function of tuft cells in promoting dysbiosis following Paneth cell deficiency and an unappreciated essential role of Paneth cells in maintaining a balanced microbiota to prevent inappropriate activation of tuft cells and deleterious dysbiosis. This succinate-tuft cell inflammation circuit may also contribute to the chronic dysbiosis observed in patients.


Subject(s)
Dysbiosis , Mucous Membrane , Humans , Inflammation , Paneth Cells , Succinates , Succinic Acid
4.
Semin Cell Dev Biol ; 150-151: 35-42, 2023 12.
Article in English | MEDLINE | ID: mdl-36889997

ABSTRACT

The intestinal epithelium plays crucial roles in maintaining gut homeostasis. A key function consists in constituting a physical and chemical barrier between self and non-self-compartments, and, based on its crosstalk with the luminal environment, in controlling activation of the host immune system. Tuft cells are a unique epithelial cell lineage, the function of which remained a mystery even 50 years after their initial discovery. The first function of intestinal tuft cells was recently described, with a central role in initiating type 2 immune responses following infection with helminth parasites. Since then, tuft cells have emerged as sentinel cells recognizing a variety of luminal cues, mediating the host-microorganisms crosstalk with additional pathogens, including viruses and bacteria. Although it can be anticipated that more functions will be discovered for tuft cells in the future, recent discoveries already propelled them at the forefront of gut mucosal homeostasis regulation, with important potential impact in gut physiopathology. This review focuses on intestinal tuft cells, from their initial description to the current understanding of their functions, and their potential impact in diseases.


Subject(s)
Epithelial Cells , Intestinal Mucosa , Epithelial Cells/metabolism , Immunity , Cell Lineage , Immune System
5.
EMBO Rep ; 24(2): e54261, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36545778

ABSTRACT

CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.


Subject(s)
Cyclin-Dependent Kinases , Cystic Fibrosis Transmembrane Conductance Regulator , Intestinal Mucosa , Signal Transduction , Animals , Mice , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Intestinal Mucosa/metabolism , Phosphorylation
7.
Mucosal Immunol ; 15(6): 1243-1256, 2022 06.
Article in English | MEDLINE | ID: mdl-35288645

ABSTRACT

Macrophage migration inhibitory factor (MIF) is a key innate immune mediator with chemokine- and cytokine-like properties in the inflammatory pathway. While its actions on macrophages are well-studied, its effects on other cell types are less understood. Here we report that MIF is required for expansion of intestinal tuft cells during infection with the helminth Nippostrongylus brasiliensis. MIF-deficient mice show defective innate responses following infection, lacking intestinal epithelial tuft cell hyperplasia or upregulation of goblet cell RELMß, and fail to expand eosinophil, type 2 innate lymphoid cell (ILC2) and macrophage (M2) populations. Similar effects were observed in MIF-sufficient wild-type mice given the MIF inhibitor 4-IPP. MIF had no direct effect on epithelial cells in organoid cultures, and MIF-deficient intestinal stem cells could generate tuft cells in vitro in the presence of type 2 cytokines. In vivo the lack of MIF could be fully compensated by administration of IL-25, restoring tuft cell differentiation and goblet cell expression of RELM-ß, demonstrating its requirement upstream of the ILC2-tuft cell circuit. Both ILC2s and macrophages expressed the MIF receptor CXCR4, indicating that MIF may act as an essential co-factor on both cell types to activate responses to IL-25 in helminth infection.


Subject(s)
Macrophage Migration-Inhibitory Factors , Strongylida Infections , Mice , Animals , Macrophage Migration-Inhibitory Factors/genetics , Immunity, Innate , Lymphocytes , Nippostrongylus
8.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34779829

ABSTRACT

Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.


Subject(s)
Epithelial Cells/metabolism , Goblet Cells/metabolism , Intestine, Small/cytology , Organoids/metabolism , Strongylida Infections/metabolism , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelial Cells/parasitology , Female , Gene Expression Regulation/drug effects , Goblet Cells/parasitology , Helminth Proteins/metabolism , Helminth Proteins/pharmacology , Host-Parasite Interactions , Interleukin-13/pharmacology , Interleukin-4/pharmacology , Intestine, Small/parasitology , Mice, Inbred C57BL , Nematospiroides dubius/metabolism , Nematospiroides dubius/physiology , Nippostrongylus/metabolism , Nippostrongylus/physiology , Organoids/cytology , Organoids/parasitology , Strongylida Infections/parasitology , Succinic Acid/pharmacology , Transcriptome/drug effects
9.
Front Immunol ; 13: 1011617, 2022.
Article in English | MEDLINE | ID: mdl-36741363

ABSTRACT

Currently, the study of resistance mechanisms and disease progression in cancer relies on the capacity to analyze tumors as a complex ecosystem of healthy and malignant cells. Therefore, one of the current challenges is to decipher the intra-tumor heterogeneity and especially the spatial distribution and interactions of the different cellular actors within the tumor. Preclinical mouse models are widely used to extend our understanding of the tumor microenvironment (TME). Such models are becoming more sophisticated and allow investigating questions that cannot be addressed in clinical studies. Indeed, besides studying the tumor cell interactions within their environment, mouse models allow evaluating the efficacy of new drugs and delivery approaches, treatment posology, and toxicity. Spatially resolved analyses of the intra-tumor heterogeneity require global approaches to identify and localize a large number of different cell types. For this purpose, imaging mass cytometry (IMC) is a major asset in the field of human immuno-oncology. However, the paucity of validated IMC panels to study TME in pre-clinical mouse models remains a critical obstacle to translational or basic research in oncology. Here, we validated a panel of 31 markers for studying at the single-cell level the TME and the immune landscape for discovering/characterizing cells with complex phenotypes and the interactions shaping the tumor ecosystem in mouse models.


Subject(s)
Ecosystem , Neoplasms , Animals , Mice , Humans , Disease Models, Animal , Tumor Microenvironment , Image Cytometry
10.
Front Immunol ; 12: 781108, 2021.
Article in English | MEDLINE | ID: mdl-34880874

ABSTRACT

Helminth parasite infections of humans and livestock are a global health and economic problem. Resistance of helminths to current drug treatment is an increasing problem and alternative control approaches, including vaccines, are needed. Effective vaccine design requires knowledge of host immune mechanisms and how these are stimulated. Mouse models of helminth infection indicate that tuft cells, an unusual type of epithelial cell, may 'sense' infection in the small intestine and trigger a type 2 immune response. Currently nothing is known of tuft cells in immunity in other host species and in other compartments of the gastrointestinal (GI) tract. Here we address this gap and use immunohistochemistry and single cell RNA-sequencing to detail the presence and gene expression profile of tuft cells in sheep following nematode infections. We identify and characterize tuft cells in the ovine abomasum (true stomach of ruminants) and show that they increase significantly in number following infection with the globally important nematodes Teladorsagia circumcincta and Haemonchus contortus. Ovine abomasal tuft cells show enriched expression of tuft cell markers POU2F3, GFI1B, TRPM5 and genes involved in signaling and inflammatory pathways. However succinate receptor SUCNR1 and free fatty acid receptor FFAR3, proposed as 'sensing' receptors in murine tuft cells, are not expressed, and instead ovine tuft cells are enriched for taste receptor TAS2R16 and mechanosensory receptor ADGRG6. We also identify tuft cell sub-clusters at potentially different stages of maturation, suggesting a dynamic process not apparent from mouse models of infection. Our findings reveal a tuft cell response to economically important parasite infections and show that while tuft cell effector functions have been retained during mammalian evolution, receptor specificity has diverged. Our data advance knowledge of host-parasite interactions in the GI mucosa and identify receptors that may potentiate type 2 immunity for optimized control of parasitic nematodes.


Subject(s)
Epithelial Cells/immunology , Intestinal Diseases, Parasitic/immunology , Nematode Infections/immunology , Sheep Diseases/immunology , Sheep Diseases/parasitology , Animals , Biological Evolution , Sheep
12.
Nat Commun ; 12(1): 4810, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376666

ABSTRACT

The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.


Subject(s)
Cell Proliferation , Epithelial Cells/metabolism , HSP90 Heat-Shock Proteins/metabolism , Intestinal Mucosa/metabolism , Molecular Chaperones/metabolism , Animals , Cells, Cultured , Epithelial Cells/cytology , Humans , Intestinal Mucosa/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Protein Binding , Stem Cells/cytology , Stem Cells/metabolism
13.
C R Biol ; 344(3): 263-273, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-35786630

ABSTRACT

The intestinal epithelium is one of our main interfaces with the outside world, including the intestinal microbiota. This epithelium thus combines the two essential functions of nutrient absorption and barrier. In order to fulfill its different roles, the intestinal epithelium is made up of several specialized cell types. Among these, tuft cells have long remained in the shadows, but the understanding of their function has accelerated dramatically in recent years. The purpose of this review is to outline the characterization of tuft cells and the discovery of their sentinel function in the intestinal mucosa.


L'épithélium intestinal constitue l'une de nos principales interfaces avec le monde extérieur, y compris le microbiote intestinal. Cet épithélium combine ainsi les deux fonctions essentielles d'absorption de nutriments et de barrière. Afin de remplir ses différents rôles, l'épithélium intestinal est constitué de plusieurs types cellulaires spécialisés. Parmi ceux-ci, les cellules tuft sont longtemps restées dans l'ombre, mais la compréhension de leur fonction a connu une accélération spectaculaire ces dernières années. L'objet de cette revue est de retracer les grandes lignes de la caractérisation des cellules tuft et de la découverte de leur fonction de sentinelle dans la muqueuse intestinale.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Epithelial Cells/metabolism
14.
Biology (Basel) ; 9(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086657

ABSTRACT

TUFT cells have been described as strong modulators of inflammatory cells in several tissues including pancreas. TUFT cells, also known as DCLK1+ cells, are dependent of the transcriptional factor POU2F3. Several works report DCLK1+ cells in early stages of PDAC development suggesting an important role of TUFT cells in PDAC development. Therefore, we developed a mice model (PDX1-Cre;KrasG12D;Ink4afl/fl), known as PKI model, deficient or not of POU2F3. In this animal model, deficiency of POU2F3 results in the absence of TUFT cells in PDAC as expected. Although, tumor development and growth are not significantly influenced, the development of liver metastasis was almost completely inhibited in POU2F3-deficient mice. Surprisingly, the absence of metastasis was associated with a higher expression of epithelial-to-mesenchymal transition markers, but to a lower inflammatory microenvironment suggesting that inflammation influences metastasis production more than epithelial-to-mesenchymal transition in this animal model. We can conclude that POU2F3 could be a new therapeutic target for control PDAC progression.

15.
Cancer Res ; 80(11): 2101-2113, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32213541

ABSTRACT

Colorectal cancer initiation and progression result from the accumulation of genetic and epigenetic alterations. Although aberrant gene expression and DNA methylation profiles are considered hallmarks of colorectal cancer development, the precise timing at which these are produced during tumor establishment remains elusive. Here we investigated the early transcriptional and epigenetic changes induced by adenomatous polyposis coli (Apc) inactivation in intestinal crypts. Hyperactivation of the Wnt pathway via Apc inactivation in crypt base columnar intestinal stem cells (ISC) led to their rapid accumulation driven by an impaired molecular commitment to differentiation, which was associated with discrete alterations in DNA methylation. Importantly, inhibiting the enzymes responsible for de novo DNA methylation restored the responsiveness of Apc-deficient intestinal organoids to stimuli regulating the proliferation-to-differentiation transition in ISC. This work reveals that early DNA methylation changes play critical roles in the establishment of the impaired fate decision program consecutive to Apc loss of function. SIGNIFICANCE: This study demonstrates the functional impact of changes in DNA methylation to determine the colorectal cancer cell phenotype following loss of Apc function.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , DNA Methylation , Intestine, Small/cytology , Intestine, Small/metabolism , Receptors, G-Protein-Coupled/biosynthesis , Stem Cells/pathology , Adenomatous Polyposis Coli Protein/deficiency , Adenomatous Polyposis Coli Protein/metabolism , Animals , Cell Differentiation/physiology , Cell Division/physiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Gene Silencing , Intestine, Small/pathology , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Stem Cells/metabolism , Wnt Signaling Pathway
16.
Front Cell Dev Biol ; 8: 618552, 2020.
Article in English | MEDLINE | ID: mdl-33575256

ABSTRACT

Intestinal organoids are an excellent model to study epithelial biology. Yet, the selection of analytical tools to accurately quantify heterogeneous organoid cultures remains limited. Here, we developed a semi-automated organoid screening method, which we applied to a library of highly specific chemical probes to identify epigenetic regulators of intestinal epithelial biology. The role of epigenetic modifiers in adult stem cell systems, such as the intestinal epithelium, is still undefined. Based on this resource dataset, we identified several targets that affected epithelial cell differentiation, including HDACs, EP300/CREBBP, LSD1, and type I PRMTs, which were verified by complementary methods. For example, we show that inhibiting type I PRMTs, which leads enhanced epithelial differentiation, blocks the growth of adenoma but not normal organoid cultures. Thus, epigenetic probes are powerful tools to study intestinal epithelial biology and may have therapeutic potential.

17.
Nature ; 559(7715): 622-626, 2018 07.
Article in English | MEDLINE | ID: mdl-30022162

ABSTRACT

T cell development and selection are coordinated in the thymus by a specialized niche of diverse stromal populations1-3. Although much progress has been made over the years in identifying the functions of the different cell types of the thymic stromal compartment, there is no comprehensive characterization of their diversity and heterogeneity. Here we combined massively parallel single-cell RNA-sequencing4,5, spatial mapping, chromatin profiling and gene targeting to characterize de novo the entire stromal compartment of the mouse thymus. We identified dozens of cell states, with thymic epithelial cells (TECs) showing the highest degree of heterogeneity. Our analysis highlights four major medullary TEC (mTEC I-IV) populations, with distinct molecular functions, epigenetic landscapes and lineage regulators. Specifically, mTEC IV constitutes a new and highly divergent TEC lineage with molecular characteristics of the gut chemosensory epithelial tuft cells. Mice deficient in Pou2f3, a master regulator of tuft cells, have complete and specific depletion of mTEC IV cells, which results in increased levels of thymus-resident type-2 innate lymphoid cells. Overall, our study provides a comprehensive characterization of the thymic stroma and identifies a new tuft-like TEC population, which is critical for shaping the immune niche in the thymus.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Interleukin-17/metabolism , Interleukins/metabolism , Single-Cell Analysis , Thymus Gland/cytology , Thymus Gland/immunology , Animals , Epigenesis, Genetic , Epithelial Cells/immunology , Female , Humans , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Molecular , Transcription Factors/biosynthesis , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , AIRE Protein
18.
Cancer Res ; 77(10): 2722-2734, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28283655

ABSTRACT

The cell proliferation antigen Ki-67 is widely used in cancer histopathology, but estimations of Ki-67 expression levels are inconsistent and understanding of its regulation is limited. Here we show that cell-cycle regulation underlies variable Ki-67 expression in all situations analyzed, including nontransformed human cells, normal mouse intestinal epithelia and adenomas, human cancer cell lines with or without drug treatments, and human breast and colon cancers. In normal cells, Ki-67 was a late marker of cell-cycle entry; Ki-67 mRNA oscillated with highest levels in G2 while protein levels increased throughout the cell cycle, peaking in mitosis. Inhibition of CDK4/CDK6 revealed proteasome-mediated Ki-67 degradation in G1 After cell-cycle exit, low-level Ki-67 expression persisted but was undetectable in fully quiescent differentiated cells or senescent cells. CDK4/CDK6 inhibition in vitro and in tumors in mice caused G1 cell-cycle arrest and eliminated Ki-67 mRNA in RB1-positive cells but had no effect in RB1-negative cells, which continued to proliferate and express Ki-67. Thus, Ki-67 expression varies due to cell-cycle regulation, but it remains a reliable readout for effects of CDK4/CDK6 inhibitors on cell proliferation. Cancer Res; 77(10); 2722-34. ©2017 AACR.


Subject(s)
Cell Cycle/genetics , Gene Expression , Ki-67 Antigen/genetics , Animals , Antineoplastic Agents/pharmacology , Biomarkers , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/genetics , Cluster Analysis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Ki-67 Antigen/metabolism , Mice , Mice, Knockout , Xenograft Model Antitumor Assays
20.
Elife ; 5: e13722, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26949251

ABSTRACT

Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression.


Subject(s)
Cell Proliferation , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Ki-67 Antigen/metabolism , Animals , Gene Expression , Gene Knockdown Techniques , Humans , Mice , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...