Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Biol (Weinh) ; 8(1): e2300349, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37786307

ABSTRACT

Solubilizing extracellular matrix (ECM) materials and transforming them into hydrogels has expanded their potential applications both in vitro and in vivo. In this study, hydrogels are prepared by decellularization of human placental tissue using detergent and enzymes and by the subsequent creation of a homogenized acellular placental tissue powder (P-ECM). A perfusion-based decellularization approach is employed using detergent and enzymes. The P-ECM with and without gamma irradiation is then utilized to prepare P-ECM hydrogels. Physical and biological evaluations are conducted to assess the suitability of the P-ECM hydrogels for biocompatibility. The decellularized tissue has significantly reduced cellular content and retains the major ECM proteins. Increasing the concentration of P-ECM leads to improved mechanical properties of the P-ECM hydrogels. The biocompatibility of the P-ECM hydrogel is demonstrated through cell proliferation and viability assays. Notably, gamma-sterilized P-ECM does not support the formation of a stable hydrogel. Nonetheless, the use of HCl during the digestion process effectively decreases spore growth and bacterial bioburden. The study demonstrates that P-ECM hydrogels exhibit physical and biological attributes conducive to soft tissue reconstruction. These hydrogels establish a favorable microenvironment for cell growth and the need for investigating innovative sterilization methods.


Subject(s)
Detergents , Hydrogels , Female , Pregnancy , Humans , Hydrogels/pharmacology , Detergents/metabolism , Placenta , Extracellular Matrix/metabolism , Biological Assay
2.
ACS Appl Bio Mater ; 6(2): 615-627, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36723448

ABSTRACT

Wounds are a serious life threat that occurs in daily life. The complex cascade of synchronized cellular and molecular phases in wound healing is impaired by different means, involving infection, neuropathic complexes, abnormal blood circulation, and cell proliferation at the wound region. Thus, to overcome these problems, a multifunctional wound dressing material is fabricated. In the current research work, we have fabricated a wound dressing polymeric patch, with poly(vinyl alcohol) (PVA) and chitosan (Cs) incorporated with a photocatalytic graphene nanocomposite (GO/TiO2(V-N)) and curcumin by a gel casting method, that focuses on multiple stages of the healing process. The morphology, swelling, degradation, moisture vapor transmission rate (MVTR), porosity, light-induced antibacterial activity, hemolysis, blood clotting, blood abortion, light-induced biocompatibility, migration assay, and drug release were analyzed for the polymeric patches under in vitro conditions. PVA/Cs/GO/TiO2(V-N)/Cur patches have shown enhanced wound healing in in vivo wound healing experiments on Wister rats. They show higher collagen deposition, thicker granulation tissue, and higher fibroblast density than conventional dressing. A histological study shows excellent re-epithelialization ability and dense collagen deposition. In vitro and in vivo analysis confirmed that PVA/Cs/GO/TiO2(V-N) and PVA/Cs/GO/TiO2(V-N)/Cur patches enhance the wound healing process.


Subject(s)
Chitosan , Hemostatics , Rats , Animals , Chitosan/pharmacology , Hemostatics/pharmacology , Hemostatics/therapeutic use , Rats, Wistar , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bandages/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL