Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Genet ; 45(8): 923-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23770606

ABSTRACT

Chondrosarcoma is a heterogeneous collection of malignant bone tumors and is the second most common primary malignancy of bone after osteosarcoma. Recent work has identified frequent, recurrent mutations in IDH1 or IDH2 in nearly half of central chondrosarcomas. However, there has been little systematic genomic analysis of this tumor type, and, thus, the contribution of other genes is unclear. Here we report comprehensive genomic analyses of 49 individuals with chondrosarcoma (cases). We identified hypermutability of the major cartilage collagen gene COL2A1, with insertions, deletions and rearrangements identified in 37% of cases. The patterns of mutation were consistent with selection for variants likely to impair normal collagen biosynthesis. In addition, we identified mutations in IDH1 or IDH2 (59%), TP53 (20%), the RB1 pathway (33%) and Hedgehog signaling (18%).


Subject(s)
Bone Neoplasms/genetics , Chondrosarcoma/genetics , Collagen Type II/genetics , Mutation , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Collagen Type II/metabolism , Computational Biology , DNA Copy Number Variations , Databases, Genetic , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Neoplasm Grading , Polymorphism, Single Nucleotide , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Signal Transduction
2.
J Clin Invest ; 123(7): 2965-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23778141

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare malignancy that can occur in multiple organ sites and is primarily found in the salivary gland. While the identification of recurrent fusions of the MYB-NFIB genes have begun to shed light on the molecular underpinnings, little else is known about the molecular genetics of this frequently fatal cancer. We have undertaken exome sequencing in a series of 24 ACC to further delineate the genetics of the disease. We identified multiple mutated genes that, combined, implicate chromatin deregulation in half of cases. Further, mutations were identified in known cancer genes, including PIK3CA, ATM, CDKN2A, SF3B1, SUFU, TSC1, and CYLD. Mutations in NOTCH1/2 were identified in 3 cases, and we identify the negative NOTCH signaling regulator, SPEN, as a new cancer gene in ACC with mutations in 5 cases. Finally, the identification of 3 likely activating mutations in the tyrosine kinase receptor FGFR2, analogous to those reported in ovarian and endometrial carcinoma, point to potential therapeutic avenues for a subset of cases.


Subject(s)
Carcinoma, Adenoid Cystic/genetics , Exome , Salivary Gland Neoplasms/genetics , DNA Mutational Analysis , Genes, Neoplasm , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Mutation , Polymorphism, Single Nucleotide
3.
Nature ; 486(7403): 400-4, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22722201

ABSTRACT

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Mutagenesis/genetics , Mutation/genetics , Oncogenes/genetics , Age Factors , Breast Neoplasms/classification , Breast Neoplasms/pathology , Cytosine/metabolism , DNA Mutational Analysis , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Neoplasm Grading , Reproducibility of Results , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL