Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(15): 7360-7370, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37113457

ABSTRACT

Heteroatom doping is regarded as a promising method for controlling the optoelectronic properties of carbon nanodots (CNDs), notably their fluorescence and antioxidation activities. In this study, phosphorous (P) and boron (B) are doped at different quantities in the CNDs' structures to investigate their effects on the optical and antioxidation properties. Both the dopants can enhance light absorption and fluorescence, yet via different approaches. After doping, the UV-vis absorption of high P%-CNDs demonstrated a slight blue shift (348-345 nm), while the high B%-CNDs showed a minor red shift (348-351 nm), respectively. The fluorescence emission wavelength of doped CNDs changes marginally while the intensity increases significantly. Structural and composition characterizations show elevated levels of C=O on the surface of high P%-CND compared to low P%-CNDs. In B-doped CNDs, more NO3 - functional groups and O-C=O bonds and fewer C-C bonds form at the surface of high B%-CNDs compared to the low B%-CNDs. A radical scavenging study using 2,2-diphenyl-1-picrylhydrazyl (DPPH) was carried out for all CNDs. It was found that the high B%-CNDs exhibited the highest scavenging capacity. The effects of the atomic properties of dopants and the resulting structures of CNDs, including atomic radius, electronegativity, and bond lengths with carbon, on the optoelectronic property and antioxidative reactions of CNDs are comprehensively discussed. It suggests that the effect of P-doping has a major impact on the carbogenic core structure of the CNDs, while the B-doping mainly impacts the surface functionalities.

2.
ACS Appl Nano Mater ; 6(3): 2071-2082, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36789152

ABSTRACT

A surface plasmon resonance (SPR)-enhanced optical signal using a nanoslit array and acridine orange (AO) dye system at a flexible poly(dimethylsiloxane) (PDMS) substrate was achieved in this work and demonstrated a simple sensing scheme to directly detect SARS-CoV-2 nucleic acid via DNA hybridization. A simple nanoimprinting pattern transfer technique was introduced to form uniform reproducible nanoslit arrays where the dimensions of the slit array were controlled by the thickness of the gold film. The plasmon-exciton coupling effect on the optical enhancement of different dye molecules, i.e., AO, propidium iodide (PI), or dihydroethidium (DHE) attached to the nanoslit surfaces, was examined thoroughly by measuring the surface reflection and fluorescence imaging. The results indicate that the best overlap of the plasmon resonance wavelength to the excitation spectrum of AO presented the largest optical enhancement (∼57×) compared to the signal at flat gold surfaces. Based on this finding, a sensitive assay for detecting DNA hybridization was generated using the interaction of the selected SARS-CoV-2 ssDNA and dsDNA with AO to trigger the metachromatic behavior of the dye at the nanoarray surfaces. We found strong optical signal amplification on the formation of acridine-ssDNA complexes and a quenched signal upon hybridization to the complementary target DNA (ct-DNA) along with a blue shift in the fluorescence of AO-dsDNAs. A quantitative evaluation of the ct-DNA concentration in a range of 100-0.08 nM using both the reflection and emission imaging signals demonstrated two linear regimes with a lowest detection limit of 0.21 nM. The sensing method showed high sensitivity and distinguished signals from 1-, 2-, and 3-base mismatched DNA targets, as well as high stability and reusability. This approach toward enhancing optical signal for DNA sensing offers promise in a general, rapid, and direct vision detection method for nucleic acid analytes.

3.
Molecules ; 27(8)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35458634

ABSTRACT

Carbon nanodots are fascinating candidates for the field of biomedicine, in applications such as bioimaging and drug delivery. However, the nuclear penetrability and process are rarely studied and lack understanding, which limits their applications for drug carriers, single-molecule detection and live cell imaging. In this study, we attempt to examine the uptake of CNDs in cells with a focus on the potential nuclear penetrability using enhanced dark-field microscopy (EDFM) associated with hyperspectral imaging (HSI) to quantitatively determine the light scattering signals of CNDs in the cells. The effects of both CND incubation time and concentration are investigated, and plausible nuclear penetration involving the nuclear pore complex (NPC) is discussed. The experimental results and an analytical model demonstrate that the CNDs' uptake proceeds by a concentration-dependent three-stage behavior and saturates at a CND incubation concentration larger than 750 µg/mL, with a half-saturated concentration of 479 µg/mL. These findings would potentially help the development of CNDs' utilization in drug carriers, live cell imaging and other biomedical applications.


Subject(s)
Carbon , Microscopy , Biological Transport , Chemical Phenomena , Drug Carriers
4.
Biomater Sci ; 9(14): 5045-5056, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34127999

ABSTRACT

Amphiphilic phospholipid-iodinated polymer conjugates were designed and synthesized as new macromolecular probes for a highly radiopaque and biocompatible imaging technology. Bioconjugation of PEG 2000-phospholipids and iodinated polyesters by click chemistry created amphiphilic moieties with hydrophobic polyesters and hydrophilic PEG units, which allowed their self-assemblies into vesicles or spiked vesicles. More importantly, the conjugates exhibited high radiopacity and biocompatibility in in vitro X-ray and cell viability measurements. This new type of bioimaging contrast agent with a Mn value of 11 289 g mol-1 was found to have a significant X-ray signal at 3.13 mg mL-1 of iodine equivalent than baseline and no cytotoxicity after 48 hours incubation of with HEK and 3T3 cells at 20 µM (20 picomoles) concentration of conjugates per well. The potential of adopting the described macromolecular probes for bioimaging was demonstrated, which could further promote the development of a field-friendly and highly sensitive bioimaging contrast agent for point-of-care diagnostic applications.


Subject(s)
Phospholipids , Polymers , Animals , Contrast Media , Hydrophobic and Hydrophilic Interactions , Mice , Polyesters , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL
...