Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater Eng ; 29(5): 551-566, 2018.
Article in English | MEDLINE | ID: mdl-30400071

ABSTRACT

Alzheimer is a degenerative disorder that attacks neurons, resulting in loss of memory, thinking, language skills, and behavioral changes. Computer-aided detection methods can uncover crucial information recorded by electroencephalograms. A systematic literature search presents the wavelet transform as a frequently used technique in Alzheimer's detection. However, it requires a defined basis function considered a significant problem. In this work, the concept of empirical mode decomposition is introduced as an alternative to process Alzheimer signals. The performance of empirical mode decomposition heavily relies on a parameter called threshold. In our previous works, we found that the existing thresholding techniques were not able to highlight relevant information. The use of Tsallis entropy as a thresholder is evaluated through the combination of empirical mode decomposition and neural networks. Thanks to the extraction of better features that boost the classification accuracy, the proposed approach outperforms the state-of-the-art in terms of peak signal to noise ratio and root mean square error. Hence, our methodology is more likely to succeed than methods based on other landmarks such as Bayes, Normal and Visu shrink. We finally report an accuracy rate of 80%, while the aforementioned techniques only yield performances of 65%, 60% and 40%, respectively.


Subject(s)
Alzheimer Disease/diagnosis , Electroencephalography/methods , Entropy , Signal Processing, Computer-Assisted , Algorithms , Bayes Theorem , Humans , Neural Networks, Computer , Pattern Recognition, Automated/methods , Wavelet Analysis
2.
Healthc Technol Lett ; 3(3): 230-238, 2016 Sep.
Article in English | MEDLINE | ID: mdl-30800318

ABSTRACT

The presence of irregularities in electroencephalographic (EEG) signals entails complexities during the Alzheimer's disease (AD) diagnosis. In addition, the uncertainty presented on EEG raises major issues in the improvement of the classification rate. The multi-resolution analysis through an optimum threshold will likely achieve better results in distinguishing AD and normal EEG signals. Hence, a fuzzy-entropy concept defined in a complex multi-resolution wavelet has been proposed to obtain the most appropriate threshold. First, the complex coefficients are fuzzified using a Gaussian membership function. Afterwards, the ability of the proposed fuzzy-entropy threshold has been compared with traditional thresholds in complex wavelet domain. Experimental results show that the authors' methodology produces a higher signal-to-noise ratio and a lower root-mean-square error than traditional approaches. Moreover, a neural network scheme is performed along several features to classify AD from normal EEG signals obtaining a specificity of 87.5%.

SELECTION OF CITATIONS
SEARCH DETAIL
...