Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37465933

ABSTRACT

Protein-carbohydrate interactions play a crucial role in mediating several biomolecular recognition events. We attempt to unravel its intricacies by understanding how carbohydrate-binding proteins interpret the glycan code. We aim to decipher lectin-mediated recognition in the endoplasmic reticulum (ER), which plays a crucial role in ER-mediated quality control (ER-QC). The ER-QC functions in three phases-protein folding, transport, and degradation. Altered protein QC leads to ER-related storage disorders. Cargo transport proteins-Ergic53 and Vip36-necessary for maintaining cellular homeostasis-are our primary focus. They recognize monoglucosylated/high mannose N-glycans on the folded glycoproteins. This article reports on the first dynamic investigation of the ER cargo lectins in complex with the high mannose glycans using an advanced sampling technique-replica exchange molecular dynamics to decipher the inherent conformational heterogeneity and the binding mechanism. The study involves simulations for the proteins complexed with three high mannose glycans-Man8B, Man9, and mono-glucosylated glycan. The recognition process is captured using MD simulations to achieve mechanistic insights and characterize the dynamics of glycans in their native and bound states via dihedral angle analysis. Results indicate that the flipped conformation of the glycans was crucial in differentiating their interaction with the proteins. Similar conformers of the glycans are preferred for Ergic53 and Vip36 in their glycan recognition events. Ergic53 preferred Man8B while it was Man9 for Vip36, in coherence with the previous experimental reports. These simulations provide a computational microscopic purview of the mechanism at both spatial and temporal scales. The results correlate with the published experimental data on the specificities of these lectins.

2.
ACS Chem Biol ; 17(1): 103-117, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34928574

ABSTRACT

The SARS-CoV-2 virus has been known to gain entry into the host cell through the spike protein that binds to the host ACE2 cell surface protein. However, the role of the putative sugar-binding sites in the spike protein has remained unclear. We provide a comprehensive in silico outlook into the infection initiation wherein the virus first recognizes the sialosides on the cell via its S1A domain of the spike protein as it surfs over the cell surface. This facilitates the subsequent interaction with the cellular glycosaminoglycans through the S1B domain of the spike protein as it binds to the ACE2 receptor. The unique coadaptation to recognize both the host protein and the cell-surface carbohydrate receptors provides an additional coupling mechanism for efficient viral attachment and infection.


Subject(s)
Glycosaminoglycans/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , Cell Membrane , Gangliosides/chemistry , Molecular Dynamics Simulation , Protein Domains , Protein Subunits
4.
J Biol Chem ; 295(34): 12111-12129, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32636304

ABSTRACT

N-Linked glycans are critical to the infection cycle of HIV, and most neutralizing antibodies target the high-mannose glycans found on the surface envelope glycoprotein-120 (gp120). Carbohydrate-binding proteins, particularly mannose-binding lectins, have also been shown to bind these glycans. Despite their therapeutic potency, their ability to cause lymphocyte proliferation limits their application. In this study, we report one such lectin named horcolin (Hordeum vulgare lectin), seen to lack mitogenicity owing to the divergence in the residues at its carbohydrate-binding sites, which makes it a promising candidate for exploration as an anti-HIV agent. Extensive isothermal titration calorimetry experiments reveal that the lectin was sensitive to the length and branching of mannooligosaccharides and thereby the total valency. Modeling and simulation studies demonstrate two distinct modes of binding, a monovalent binding to shorter saccharides and a bivalent mode for higher glycans, involving simultaneous interactions of multiple glycan arms with the primary carbohydrate-binding sites. This multivalent mode of binding was further strengthened by interactions of core mannosyl residues with a secondary conserved site on the protein, leading to an exponential increase in affinity. Finally, we confirmed the interaction of horcolin with recombinant gp120 and gp140 with high affinity and inhibition of HIV infection at nanomolar concentrations without mitogenicity.


Subject(s)
HIV Envelope Protein gp120/chemistry , HIV Infections , HIV-1/chemistry , Hordeum/chemistry , Mannose/chemistry , Plant Lectins/chemistry , Polysaccharides/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , Animals , HEK293 Cells , HIV-1/metabolism , Hordeum/genetics , Humans , Male , Mice , Plant Lectins/genetics , Rabbits
5.
Biochem J ; 474(14): 2333-2347, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28673927

ABSTRACT

Glycosylation constitutes one of the most common, ubiquitous and complex forms of post-translational modification. It commences with the synthesis of the protein and plays a significant role in deciding its folded state, oligomerization and thus its function. Recent studies have demonstrated that N-linked glycans help proteins to fold as the stability and folding kinetics are altered with the removal of the glycans from them. Several studies have shown that it alters not only the thermodynamic stability but also the structural features of the folded proteins modulating their interactions and functions. Their inhibition and perturbations have been implicated in diseases from diabetes to degenerative disorders. The intent of this review is to provide insight into the recent advancements in the general understanding on the aspect of glycosylation driven stability of proteins that is imperative to their function and finally their role in health and disease states.


Subject(s)
Glycoside Hydrolases/metabolism , Glycosyltransferases/metabolism , Models, Biological , Models, Molecular , Protein Processing, Post-Translational , Proteins/metabolism , Animals , Asparagine/metabolism , Glycosylation , Humans , Kinetics , Protein Conformation , Protein Folding , Protein Multimerization , Protein Stability , Proteins/chemistry , Proteostasis Deficiencies/enzymology , Proteostasis Deficiencies/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL