Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 264(Pt 1): 130151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403227

ABSTRACT

BACKGROUND: Reactivation of telomerase is a hallmark of cancer and the majority of cancers over-express telomerase. Telomerase-dependent telomere length maintenance confers immortality to cancer cells. However, telomere length-independent cell survival functions of telomerase also play a critical role in tumorigenesis. Multiple telomerase inhibitors have been developed as therapeutics and include anti-sense oligonucleotides, telomerase RNA component targeting agents, chemical inhibitors of telomerase, small molecule inhibitors of hTERT, and telomerase vaccine. In general, telomerase inhibitors affect cell proliferation and survival of cells depending on the telomere length reduction, culminating in replicative senescence or cell death by crisis. However, most telomerase inhibitors kill cancer cells prior to significant reduction in telomere length, suggesting telomere length independent role of telomerase in early telomere dysfunction-dependent cell death. METHODS: In this study, we explored the mechanism of cell death induced by three prominent telomerase inhibitors utilizing a series of genetically encoded sensor cells including redox and DNA damage sensor cells. RESULTS: We report that telomerase inhibitors induce early cell cycle inhibition, followed by redox alterations at cytosol and mitochondria. Massive mitochondrial oxidation and DNA damage induce classical cell death involving mitochondrial transmembrane potential loss and mitochondrial permeabilization. Real-time imaging of the progression of mitochondrial oxidation revealed that treated cells undergo a biphasic mitochondrial redox alteration during telomerase inhibition, emphasizing the potential role of telomerase in the redox regulation at mitochondria. Additionally, silencing of hTERT confirmed its predominant role in maintaining mitochondrial redox homeostasis. Interestingly, the study also demonstrated that anti-apoptotic Bcl-2 family proteins still confer protection against cell death induced by telomerase inhibitors. CONCLUSION: The study demonstrates that redox alterations and DNA damage contribute to early cell death by telomerase inhibitors and anti-apoptotic Bcl-2 family proteins confer protection from cell death by their ability to safeguard mitochondria from oxidation damage.


Subject(s)
Neoplasms , Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Neoplasms/metabolism , Enzyme Inhibitors/metabolism , Cell Death , Telomere/metabolism , Apoptosis , Mitochondria/metabolism , Oxidation-Reduction , DNA Damage
2.
Int J Biol Macromol ; 257(Pt 2): 128807, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101685

ABSTRACT

The balance between pro-death and pro-survival signaling determines the fate of cells under a variety of pathological and physiological conditions. The pro-cell death signaling, apoptosis, and survival singling, autophagy work in an integrated manner for maintaining cell integrity. Their altered balance drives pathological conditions such as cancer, inflammatory disorders, and neurodegenerative diseases. Dissecting complex crosstalk between autophagy and apoptosis requires simultaneous detection of both events at a single cell level with good temporal resolution in real-time. Here, we have used two distinct fluorescent-based probes of caspase activation and autophagy for generating such sensor cells. Cells stably expressing RFP-LC3 as an autophagy marker were further stably expressed with a FRET-based probe for caspase activation with a nuclear localization signal. The functional validation and live-cell imaging of the sensor cells using selected treatments revealed that stress that induces rapid cell death often fails to induce autophagy signaling, and slow cell death induction triggers simultaneous autophagy signaling with caspase activation. The real-time imaging revealed the time-dependent shift of cells towards caspase activation while autophagy is inhibited confirming basal autophagy confers survival against apoptosis under stress conditions. Confocal imaging also revealed that cells under 3D culture condition maintain increased autophagy over monolayer cultures. High-throughput adaptability of the system extends its application for the screening of compounds that cause caspase activation, autophagy, or both demonstrating the potential utility of the sensor probe for diverse biological applications.


Subject(s)
Apoptosis , Caspases , Caspases/metabolism , Apoptosis/genetics , Cell Death , Signal Transduction , Autophagy/genetics , Caspase 3/metabolism , Cell Line, Tumor
3.
Toxicol Lett ; 326: 23-30, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32109534

ABSTRACT

Simultaneous detection of autophagy and apoptosis is important in drug discovery and signaling studies. Here we report, a real-time reporter cell line for the simultaneous detection of apoptosis and autophagy at single-cell level employing stable integration of two fluorescent protein reporters of apoptosis and autophagy. Cells stably expressing EGFP-LC3 fusion was developed initially as a marker for autophagy and subsequently stably expressed with inter-mitochondrial membrane protein SMAC with RFP fusion to detect mitochondrial permeabilization event of apoptosis. The cell lines faithfully reported the LC3 punctae formation and release of intermembrane proteins in response to diverse apoptotic and autophagic stimuli.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor/drug effects , Drug Evaluation, Preclinical/methods , Genes, Reporter/drug effects , Green Fluorescent Proteins/drug effects , HeLa Cells/drug effects , Apoptosis/physiology , Autophagy/physiology , Cell Line, Tumor/physiology , Genes, Reporter/physiology , Green Fluorescent Proteins/physiology , HeLa Cells/physiology , Humans
4.
Sci Total Environ ; 624: 1612-1622, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29054638

ABSTRACT

Environmental cues and chemicals can potentially modulate the phenotypic expression of genome through alterations in the epigenetic mechanisms. Endosulfan is one of the extensively used organochlorine pesticides around the world which is known for its endocrine, neuro- and reproductive toxicity. This study was aimed to investigate the potential of α-endosulfan in modulation of multiple epigenetic enzymes in MCF-7 cells. The cells were treated with DMSO (control) or α-endosulfan (1 and 10µM) and the expression of various epigenetic enzymes was assayed by real-time PCR and immunoblotting, in addition to their activity assays. The results shows α-endosulfan, at 1 and 10µM concentration, significantly promoted viability of MCF-7 cells compared to untreated cells after 24h. The expression of DNA methyltransferases (DNMTs) was upregulated while the global DNA methylation status was initially affected, but later recovered. Total intracellular histone deacetylase (HDAC) activity was found to be significantly increased which was correlated with upregulation of class I HDACs (HDAC 1 and 3) while no significant alteration in the other HDAC classes was observed. The expression and activity of arginine and lysine methylation enzymes, protein arginine methyltransferase 5 (PRMT5) and Enhancer of Zeste homolog 2 (EZH2), respectively, were also found to be modulated by α-endosulfan. We found increased expression of histones H3 and H4, trimethylated H3K27 (product of EZH2), symmetric dimethylation of H4R3 (product of PRMT5) and five different (unidentified) proteins whose arginine residues are symmetrically dimethylated (by increased level of PRMT5) were enhanced in response to 10µM α-endosulfan after 24h exposure window. Moreover, overexpression of basal level of estrogen receptor alpha (ERα), suggests estrogenicity of α-endosulfan. In summary, our results shows modulatory impact of α-endosulfan on multiple cellular epigenetic regulators, known to possess oncogenic potential which might contribute to mechanistic insight of its action in future.


Subject(s)
Carcinogenesis/drug effects , Endosulfan/toxicity , Epigenesis, Genetic , Pesticides/toxicity , Enhancer of Zeste Homolog 2 Protein/metabolism , Estrogen Receptor alpha/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Humans , MCF-7 Cells , Protein-Arginine N-Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL