Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15867, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37739991

ABSTRACT

How far are species distributed on the abyssal plains? Spanning from 3000 to 6000 m below sea level, abyssal plains cover three-quarters of the ocean floor and are the largest but also least explored habitat on Earth. The question of vertical and horizontal distribution is central to understanding biogeographic and population genetic processes within species inhabiting the deep-sea benthos. Amphipod crustaceans are an important and dominant taxon in this ecosystem. As they are brooders, their dispersal capacities are more limited compared to species with free-swimming larvae, and with the exception of a few scavenging species deep-sea amphipods are restricted to a single ocean. Based on an integrative taxonomic approach (morphology, COI, 16S and 18S) we demonstrate the occurrence of a predatory amphipod species, Rhachotropis abyssalis, in three oceans: the Antarctic Ross Sea, the Northwest Pacific and the North Atlantic; regions more than 20,000 km apart. Although such extensive geographic distributions may represent a rare exception for brooding predators, these findings might also be no exception at all, but a reflection of the rare sampling and rare taxonomic investigation of invertebrate predators in the deep-sea. Our findings highlight our abysmal state of knowledge regarding biodiversity and biogeography on abyssal plains.


Subject(s)
Amphipoda , Ecosystem , Animals , Antarctic Regions , Biodiversity , Chickens
2.
Zookeys ; (731): 55-73, 2018.
Article in English | MEDLINE | ID: mdl-29472762

ABSTRACT

Amphipods constitute an abundant part of Icelandic deep-sea zoobenthos yet knowledge of the diversity of this fauna, particularly at the molecular level, is scarce. The present work aims to use molecular methods to investigate genetic variation of the Amphipoda sampled during two IceAGE collecting expeditions. The mitochondrial cytochrome oxidase subunit 1 (COI) of 167 individuals originally assigned to 75 morphospecies was analysed. These targeted morhospecies were readily identifiable by experts using light microscopy and representative of families where there is current ongoing taxonomic research. The study resulted in 81 Barcode Identity Numbers (BINs) (of which >90% were published for the first time), while Automatic Barcode Gap Discovery revealed the existence of 78 to 83 Molecular Operational Taxonomic Units (MOTUs). Six nominal species (Rhachotropis helleri, Arrhis phyllonyx, Deflexilodes tenuirostratus, Paroediceros propinquus, Metopa boeckii, Astyra abyssi) appeared to have a molecular variation higher than the 0.03 threshold of both p-distance and K2P usually used for amphipod species delineation. Conversely, two Oedicerotidae regarded as separate morphospecies clustered together with divergences in the order of intraspecific variation. The incongruence between the BINs associated with presently identified species and the publicly available data of the same taxa was observed in case of Paramphithoe hystrix and Amphilochus manudens. The findings from this research project highlight the necessity of supporting molecular studies with thorough morphology species analyses.

3.
Zookeys ; (731): 1-53, 2018.
Article in English | MEDLINE | ID: mdl-29430208

ABSTRACT

Amphipod crustaceans were collected at all 55 stations sampled with an epibenthic sledge during two IceAGE expeditions (Icelandic marine Animals: Genetics and Ecology) in 2011 and 2013. In total, 34 amphipod families and three superfamilies were recorded in the samples. Distribution maps are presented for each taxon along with a summary of the regional taxonomy for the group. Statistical analyses based on presence/absence data revealed a pattern of family distributions that correlated with sampling depth. Clustering according to the geographic location of the stations (northernmost North Atlantic Sea and Arctic Ocean) can also be observed. IceAGE data for the Amphilochidae and Oedicerotidae were analysed on species level; in case of the Amphilochidae they were compared to the findings from a previous Icelandic benthic survey, BIOICE (Benthic Invertebrates of Icelandic waters), which also identified a high abundance of amphipod fauna.

SELECTION OF CITATIONS
SEARCH DETAIL
...