Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366144

ABSTRACT

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Proteomics , Brain Stem , Cerebellum , Gene Expression Profiling
2.
JCI Insight ; 9(4)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206757

ABSTRACT

Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Down-Regulation , COVID-19/prevention & control , SARS-CoV-2 , T-Lymphocytes, Helper-Inducer
3.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37815874

ABSTRACT

Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , Immunologic Memory , COVID-19/prevention & control , Lymphoid Tissue , Vaccination , RNA, Messenger , Antibodies, Viral
4.
Nat Commun ; 13(1): 4484, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970849

ABSTRACT

Despite two years of intense global research activity, host genetic factors that predispose to a poorer prognosis of COVID-19 infection remain poorly understood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported (e.g., RAB2A) candidate protein mediators of COVID-19 outcomes by integrating results from the COVID-19 Host Genetics Initiative with population-based plasma proteomics using statistical colocalisation. The transcription factor ELF5 (ELF5) shows robust and directionally consistent associations across different outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI: 2.47-9.63; p-value < 5.0 × 10-6) for severe COVID-19 per 1 s.d. higher genetically predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial cells of the respiratory system, such as secretory and alveolar type 2 cells, using single-cell RNA sequencing and immunohistochemistry. These cells are also likely targets of SARS-CoV-2 by colocalisation with key host factors, including ACE2 and TMPRSS2. In summary, large-scale human genetic studies together with gene expression at single-cell resolution highlight ELF5 as a risk gene for severe COVID-19, supporting a role of epithelial cells of the respiratory system in the adverse host response to SARS-CoV-2.


Subject(s)
COVID-19 , DNA-Binding Proteins , Transcription Factors , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism , Respiratory System , SARS-CoV-2 , Transcription Factors/genetics
5.
Cancer Res ; 82(17): 3116-3129, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35819252

ABSTRACT

SIGNIFICANCE: Single-cell analysis of healthy lung tissue and lung cancer reveals distinct tumor cell populations, including cells with differential immune modulating capacity between smokers and never smokers, which could guide future therapeutic strategies.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/pathology , Female , Humans , Lung Neoplasms/pathology , Smokers , Smoking/adverse effects
6.
Nat Commun ; 12(1): 5826, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611171

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer mortality by 2030. Bulk transcriptomic analyses have distinguished 'classical' from 'basal-like' tumors with more aggressive clinical behavior. We derive PDAC organoids from 18 primary tumors and two matched liver metastases, and show that 'classical' and 'basal-like' cells coexist in individual organoids. By single-cell transcriptome analysis of PDAC organoids and primary PDAC, we identify distinct tumor cell states shared across patients, including a cycling progenitor cell state and a differentiated secretory state. Cell states are connected by a differentiation hierarchy, with 'classical' cells concentrated at the endpoint. In an imaging-based drug screen, expression of 'classical' subtype genes correlates with better drug response. Our results thus uncover a functional hierarchy of PDAC cell states linked to transcriptional tumor subtypes, and support the use of PDAC organoids as a clinically relevant model for in vitro studies of tumor heterogeneity.


Subject(s)
Organoids/metabolism , Single-Cell Analysis/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans
7.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34101623

ABSTRACT

Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2, with BNT162b2 (trade name: Comirnaty) efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine-induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after the standard second vaccination dose. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4 of 39 and 1 of 39 transplanted individuals showed IgA and IgG seroconversion at day 8 ± 1 after booster immunization, with minor changes until day 23 ± 5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared with those in controls and dialysis patients and this was accompanied by a broad impairment in effector cytokine production, memory differentiation, and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Promotion of anti-HLA antibodies or acute rejection was not detected after vaccination. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk of developing severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Kidney Transplantation/adverse effects , SARS-CoV-2 , Adult , Aged , Antibodies, Viral/biosynthesis , BNT162 Vaccine , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Cytokines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunologic Memory , Immunosuppressive Agents/adverse effects , Lymphocyte Activation , Male , Middle Aged , Monitoring, Immunologic , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Transplantation Immunology
8.
Cancers (Basel) ; 13(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806447

ABSTRACT

Intra-tumor heterogeneity of tumor-initiating cell (TIC) activity drives colorectal cancer (CRC) progression and therapy resistance. Here, we used single-cell RNA-sequencing of patient-derived CRC models to decipher distinct cell subpopulations based on their transcriptional profiles. Cell type-specific expression modules of stem-like, transit amplifying-like, and differentiated CRC cells resemble differentiation states of normal intestinal epithelial cells. Strikingly, identified subpopulations differ in proliferative activity and metabolic state. In summary, we here show at single-cell resolution that transcriptional heterogeneity identifies functional states during TIC differentiation. Furthermore, identified expression signatures are linked to patient prognosis. Targeting transcriptional states associated to cancer cell differentiation might unravel novel vulnerabilities in human CRC.

9.
Nat Immunol ; 22(2): 229-239, 2021 02.
Article in English | MEDLINE | ID: mdl-33398179

ABSTRACT

In chronic hepatitis C virus (HCV) infection, exhausted HCV-specific CD8+ T cells comprise memory-like and terminally exhausted subsets. However, little is known about the molecular profile and fate of these two subsets after the elimination of chronic antigen stimulation by direct-acting antiviral (DAA) therapy. Here, we report a progenitor-progeny relationship between memory-like and terminally exhausted HCV-specific CD8+ T cells via an intermediate subset. Single-cell transcriptomics implicated that memory-like cells are maintained and terminally exhausted cells are lost after DAA-mediated cure, resulting in a memory polarization of the overall HCV-specific CD8+ T cell response. However, an exhausted core signature of memory-like CD8+ T cells was still detectable, including, to a smaller extent, in HCV-specific CD8+ T cells targeting variant epitopes. These results identify a molecular signature of T cell exhaustion that is maintained as a chronic scar in HCV-specific CD8+ T cells even after the cessation of chronic antigen stimulation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Immunologic Memory/genetics , Transcriptome , Antigens, Viral/immunology , Antiviral Agents/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Gene Expression Profiling , Gene Regulatory Networks , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/virology , Host-Pathogen Interactions , Humans , Phenotype , Remission Induction , Single-Cell Analysis , Treatment Outcome
10.
Neuro Oncol ; 22(8): 1138-1149, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32297954

ABSTRACT

BACKGROUND: Glioblastoma (GBM) consists of devastating neoplasms with high invasive capacity, which have been difficult to study in vitro in a human-derived model system. Therapeutic progress is also limited by cellular heterogeneity within and between tumors, among other factors such as therapy resistance. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived GBM cell invasion. METHODS: This study combined tissue clearing and confocal microscopy with single-cell RNA sequencing of GBM cells before and after co-culture with organoid cells. RESULTS: We show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Transcriptional changes implicated in the invasion process are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Potential interactions between GBM and organoid cells identified by an in silico receptor-ligand pairing screen suggest functional therapeutic targets. CONCLUSIONS: Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection on a time scale amenable to clinical practice.


Subject(s)
Brain Neoplasms , Glioblastoma , Organoids , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplasm Invasiveness , Organoids/pathology , Transcriptome , Tumor Cells, Cultured
11.
J Clin Invest ; 130(2): 998-1009, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31697649

ABSTRACT

BACKGROUNDChronic hepatitis C virus (HCV) infection is characterized by a severe impairment of HCV-specific CD4+ T cell help that is driven by chronic antigen stimulation. We aimed to study the fate of HCV-specific CD4+ T cells after virus elimination.METHODSHCV-specific CD4+ T cell responses were longitudinally analyzed using MHC class II tetramer technology, multicolor flow cytometry, and RNA sequencing in a cohort of patients chronically infected with HCV undergoing therapy with direct-acting antivirals. In addition, HCV-specific neutralizing antibodies and CXCL13 levels were analyzed.RESULTSWe observed that the frequency of HCV-specific CD4+ T cells increased within 2 weeks after initiating direct-acting antiviral therapy. Multicolor flow cytometry revealed a downregulation of exhaustion and activation markers and an upregulation of memory-associated markers. Although cells with a Th1 phenotype were the predominant subset at baseline, cells with phenotypic and transcriptional characteristics of follicular T helper cells increasingly shaped the circulating HCV-specific CD4+ T cell repertoire, suggesting antigen-independent survival of this subset. These changes were accompanied by a decline of HCV-specific neutralizing antibodies and the germinal center activity.CONCLUSIONWe identified a population of HCV-specific CD4+ T cells with a follicular T helper cell signature that is maintained after therapy-induced elimination of persistent infection and may constitute an important target population for vaccination efforts to prevent reinfection and immunotherapeutic approaches for persistent viral infections.FUNDINGDeutsche Forschungsgemeinschaft (DFG, German Research Foundation), the National Institute of Allergy and Infectious Diseases (NIAID), the European Union, the Berta-Ottenstein-Programme for Advanced Clinician Scientists, and the ANRS.


Subject(s)
Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Antiviral Agents/administration & dosage , Female , Flow Cytometry , Follow-Up Studies , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/pathology , Humans , Male , Middle Aged , Th1 Cells/pathology
12.
Mol Syst Biol ; 14(8): e8238, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104419

ABSTRACT

Three-dimensional protein localization intricately determines the functional coordination of cellular processes. The complex spatial context of protein landscape has been assessed by multiplexed immunofluorescent staining or mass spectrometry, applied to 2D cell culture with limited physiological relevance or tissue sections. Here, we present 3D SPECS, an automated technology for 3D Spatial characterization of Protein Expression Changes by microscopic Screening. This workflow comprises iterative antibody staining, high-content 3D imaging, and machine learning for detection of mitoses. This is followed by mapping of spatial protein localization into a spherical, cellular coordinate system, a basis for model-based prediction of spatially resolved affinities of proteins. As a proof-of-concept, we mapped twelve epitopes in 3D-cultured spheroids and investigated the network effects of twelve mitotic cancer drugs. Our approach reveals novel insights into spindle fragility and chromatin stress, and predicts unknown interactions between proteins in specific mitotic pathways. 3D SPECS's ability to map potential drug targets by multiplexed immunofluorescence in 3D cell culture combined with our automated high-content assay will inspire future functional protein expression and drug assays.


Subject(s)
Drug Screening Assays, Antitumor , Epitopes/genetics , Mitosis/genetics , Proteins/genetics , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , Epitopes/immunology , Gene Expression Regulation/drug effects , High-Throughput Screening Assays , Humans , Proteins/drug effects
13.
Mol Syst Biol ; 13(11): 955, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180611

ABSTRACT

Cancer drug screening in patient-derived cells holds great promise for personalized oncology and drug discovery but lacks standardization. Whether cells are cultured as conventional monolayer or advanced, matrix-dependent organoid cultures influences drug effects and thereby drug selection and clinical success. To precisely compare drug profiles in differently cultured primary cells, we developed DeathPro, an automated microscopy-based assay to resolve drug-induced cell death and proliferation inhibition. Using DeathPro, we screened cells from ovarian cancer patients in monolayer or organoid culture with clinically relevant drugs. Drug-induced growth arrest and efficacy of cytostatic drugs differed between the two culture systems. Interestingly, drug effects in organoids were more diverse and had lower therapeutic potential. Genomic analysis revealed novel links between drug sensitivity and DNA repair deficiency in organoids that were undetectable in monolayers. Thus, our results highlight the dependency of cytostatic drugs and pharmacogenomic associations on culture systems, and guide culture selection for drug tests.


Subject(s)
Antineoplastic Agents/pharmacology , Cystadenocarcinoma, Serous/drug therapy , Drug Screening Assays, Antitumor/standards , Genome , Organoids/drug effects , Ovarian Neoplasms/drug therapy , Pharmacogenetics/methods , Animals , Automation, Laboratory , Biological Assay/standards , Cell Death , Cell Line, Tumor , Cell Proliferation , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , DNA Damage , DNA Repair , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Mice , Mice, Inbred NOD , Organoids/metabolism , Organoids/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Precision Medicine , Primary Cell Culture , Xenograft Model Antitumor Assays
14.
PLoS One ; 8(7): e70327, 2013.
Article in English | MEDLINE | ID: mdl-23936187

ABSTRACT

Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP's essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP's ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.


Subject(s)
Intracellular Space/metabolism , Prions/chemistry , Prions/metabolism , Protein Structure, Tertiary , Actin Cytoskeleton/metabolism , Animals , Animals, Genetically Modified , Cadherins/metabolism , Cell Adhesion/genetics , Cell Communication/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Glycosylation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , MCF-7 Cells , Mice , Mice, Transgenic , Microscopy, Confocal , Mutation , Prions/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
15.
Mol Cell ; 38(6): 879-88, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20620957

ABSTRACT

The proteasome, the central protease of eukaryotic cells, is composed of one core particle (CP) and one or two adjacent regulatory particles (RP), which contain multiple subunits. Several proteasome-dedicated chaperones govern the assembly of CP and RP, respectively. We sought for proteins that regulate final steps of RP-CP assembly in yeast and found Ecm29, a conserved HEAT-like repeat protein. Here, we show that Ecm29 controls the integrity of RP-CP assemblies. Ecm29 recognizes RP-CP species in which CP maturation is stalled due to the lack of distinct beta subunits. Reconstitution assays revealed that Ecm29 functions as scaffold protein during the remodeling of incompletely matured RP-CP assemblies into regular enzymes. Upon the completion of CP maturation, Ecm29 is degraded and RP-CP is dissociated.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/enzymology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/physiology , Protein Subunits/metabolism , Saccharomyces cerevisiae Proteins/genetics
16.
EMBO Rep ; 9(12): 1237-43, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18927584

ABSTRACT

Blm10 is bound to the yeast proteasome core particle, a crucial protease of eukaryotic cells [corrected]. Two gates, at both ends of the CP, control the access of protein substrates to the catalytic cavity of the CP. Normally, substrate access is auto-inhibited by a closed gate conformation unless regulatory complexes are bound to the CP and translocate protein substrates in an ATP-dependent manner. Here, we provide evidence that Blm10 recognizes pre-activated open gate CPs, which are assumed to exist in an equilibrium with inactive closed gate CP. Consequently, single-capped Blm10-CP shows peptide hydrolysis activity. Under conditions of disturbed CP assembly, as well as in open gate mutants, pre-activated CP or constitutively active CP, respectively, prevail. Then, Blm10 sequesters disordered and open gate CP by forming double-capped Blm10(2)-CP in which peptide hydrolysis activity is repressed. We conclude that Blm10 distinguishes between gate conformations and regulates the activation of CP.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Enzyme Activation , Enzyme Stability , Models, Biological , Molecular Chaperones/metabolism , Mutation/genetics , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...