Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Chromatogr ; 34(1): e4673, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31385327

ABSTRACT

Cri du Chat or 5p minus (5p-) syndrome is characterized by a deletion located on the chromosome 5 short (-p) arm and has an incidence rate of 1 in 50,000 individuals worldwide. This disease manifests in disturbances across a range of systems biochemicals. Therefore, a targeted metabolomics analysis was evaluated in patients with 5p- syndrome to help unravel the biochemical changes that occur in this disease. Urine samples were collected from people of both sexes aged 1-38 years old and analyzed by ultra-performance liquid chromatography coupled to mass spectrometry. Student' statistical test, metabolomic pathway analysis and metabolite set enrichment analysis were applied to the data. Alterations of some amino acids and amine biogenics levels were found in Cri du Chat Syndrome individuals. The alteration of most of these metabolites is associated with energy recuperation and glycolysis. In general, we found the catabolism of some metabolic pathways to be affected in 5p- patients.


Subject(s)
Cri-du-Chat Syndrome , Metabolomics/methods , Adolescent , Adult , Amino Acids/urine , Biogenic Amines/urine , Child , Child, Preschool , Chromatography, High Pressure Liquid , Cri-du-Chat Syndrome/metabolism , Cri-du-Chat Syndrome/urine , Humans , Infant , Limit of Detection , Linear Models , Metabolic Networks and Pathways , Metabolome , Reproducibility of Results , Tandem Mass Spectrometry , Young Adult
2.
Biomed Res Int ; 2018: 9875319, 2018.
Article in English | MEDLINE | ID: mdl-30065948

ABSTRACT

Diacetyl is a flavoring that imparts a buttery flavor to foods, but the use or exposure to diacetyl has been related to some diseases. We investigated the effect of oral intake of diacetyl in male and female C57/Bl mice. We performed a target metabolomics assay using ultraperformance liquid chromatography paired with triple quadrupole mass spectrometry (UPLC-MS/MS) for the determination and quantification of plasmatic metabolites. We observed alterations in metabolites present in the urea and tricarboxylic acid (TCA) cycles. Peroxynitrite plasmatic levels were evaluated by a colorimetric method, final activity of superoxide dismutase (SOD) was evaluated by an enzymatic method, and mouse behavior was evaluated. Majority of the assay showed differences between control and treatment groups, as well as between genders. This may indicate the involvement of sex hormones in the regulation of a normal metabolic profile, and the implication of sex differences in metabolite disease response.


Subject(s)
Diacetyl/pharmacology , Flavoring Agents/pharmacology , Metabolomics , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Female , Male , Mice , Tandem Mass Spectrometry
3.
PeerJ ; 6: e4688, 2018.
Article in English | MEDLINE | ID: mdl-29713565

ABSTRACT

BACKGROUND: Acetylation alters several protein properties including molecular weight, stability, enzymatic activity, protein-protein interactions, and other biological functions. Our previous findings demonstrating that diacetyl/peroxynitrite can acetylate L-lysine, L-histidine, and albumin in vitro led us to investigate whether diacetyl-treated rats suffer protein acetylation as well. METHODS: Wistar rats were administered diacetyl daily for four weeks, after which they were sacrificed, and their lung proteins were extracted to be analysed by Nano-LC-MS/MS (Q-TOF). A C18 reversed-phase column and gradient elution with formic acid/acetonitrile solutions from 2 to 50% over 150 min were used to separate the proteins. Protein detection was performed using a microTOF-Q II (QTOF) equipped with captive source and an electrospray-ionization source. The data from mass spectrometry were processed using a Compass 1.7 and analyzed using Protein Scape, software that uses Mascot algorithms to perform protein searches. RESULTS: A set of 3,162 acetylated peptides derived from 351 acetylated proteins in the diacetyl-treated group was identified. Among them, 23 targeted proteins were significantly more acetylated in the diacetyl-treated group than in the PBS control. Protein acetylation of the group treated with 540 mg/kg/day of diacetyl was corroborated by Western blotting analysis. CONCLUSIONS: These data support our hypothesis that diacetyl exposure in animals may lead to the generation of acetyl radicals, compounds that attach to proteins, affecting their functions and triggering adverse health problems.

4.
J Pharm Biomed Anal ; 140: 137-145, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28351018

ABSTRACT

Cri-du-chat syndrome (CDCS) is a rare innate disease attributed to chromosome 5p deletion characterized by a cat-like cry, craniofacial malformation, and altered behavior of affected children. Metabolomic analysis and a chemometric approach allow description of the metabolic profile of CDCS as compared to normal subjects. In the present work, UHPLC/MS was employed to analyze blood samples withdrawn from CDCS carriers (n=18) and normal parental subjects (n=18), all aged 0-34 years, aiming to set up a representative CDCS profile constructed from 33 targeted amino acids and biogenic amines. Methionine sulfoxide (MetO) was of particular concern with respect to CDCS redox balance. Increased serotonin (3-fold), methionine sulfoxide (2-fold), and Asp levels, and a little lower Orn, citrulline, Leu, Val, Ile, Asn, Gln, Trp, Thr, His, Phe, Met, and creatinine levels were found in the plasma of CDCS patients. Nitrotyrosine and Trp did not differ in normal and CDCS individuals.The accumulated metabolites may reflect, respectively, disturbances in the redox balance, deficient purine biosynthesis, and altered behavior, whereas the amino acid abatement in the latter group may affect the homeostasis of the urea cycle, citric acid cycle, branched chain amino acid synthesis, Tyr and Trp metabolism and amino acid biosynthesis. The identification of enzymatic deficiencies leading to the amino acid burden in CDCS is further required for elucidating its molecular bases and eventually propose specific or mixed amino acid supplementation to newborn patients aiming to balance their metabolism.


Subject(s)
Cri-du-Chat Syndrome , Amino Acid Sequence , Amino Acids , Biogenic Amines , Humans , Peptide Fragments
SELECTION OF CITATIONS
SEARCH DETAIL
...