Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 800594, 2022.
Article in English | MEDLINE | ID: mdl-35178388

ABSTRACT

Cardiomyocyte proliferation is an important source of new myocardium during heart development and regeneration. Consequently, mutations in drivers of cardiomyocyte proliferation cause congenital heart disease, and infarcted human hearts scar because cardiomyocytes exit the cell cycle postnatally. To boost cardiomyocyte proliferation in either setting, critical regulators must be identified. Through an ENU screen in zebrafish, the liebeskummer (lik) mutant was isolated and described as having elevated cardiomyocyte numbers during embryogenesis. The lik mutation results in a three amino acid insertion into Ruvbl2, a highly conserved ATPase. Because both gain- and loss-of-function properties have been described for ruvbl2 lik , it remains unclear whether Ruvbl2 positively or negatively regulates cardiomyocyte proliferation. Here, we demonstrate that Ruvbl2 is a suppressor of cardiomyocyte proliferation during zebrafish heart development and regeneration. First, we confirmed speculation that augmented cardiomyocyte numbers in ruvbl2 lik/lik hearts arise by hyperproliferation. To characterize bona fide ruvbl2 null animals, we created a ruvbl2 locus deletion allele (ruvbl2 Δ ). Like ruvbl2 lik/lik mutants, ruvbl2 Δ/Δ and compound heterozygote ruvbl2 lik/Δ animals display ventricular hyperplasia, demonstrating that lik is a loss of function allele and that ruvbl2 represses cardiomyocyte proliferation. This activity is autonomous because constitutive myocardial overexpression of Ruvbl2 is sufficient to suppress cardiomyocyte proliferation in control hearts and rescue the hyperproliferation observed in ruvbl2 Δ/Δ mutant hearts. Lastly, heat-shock inducible overexpression of Ruvbl2 suppresses cardiomyocyte proliferation during heart regeneration and leads to scarring. Together, our data demonstrate that Ruvbl2 functions autonomously as a suppressor of cardiomyocyte proliferation during both zebrafish heart development and adult heart regeneration.

2.
Dis Model Mech ; 15(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35098309

ABSTRACT

Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFß) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFß signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFß signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFß signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Aortic Aneurysm, Thoracic , Latent TGF-beta Binding Proteins/metabolism , Marfan Syndrome , Zebrafish Proteins/metabolism , Animals , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Dilatation , Humans , Larva/metabolism , Latent TGF-beta Binding Proteins/genetics , Marfan Syndrome/pathology , Mice , Transforming Growth Factor beta/metabolism , Zebrafish/metabolism
3.
Cell Rep ; 24(5): 1342-1354.e5, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30067987

ABSTRACT

Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.


Subject(s)
22q11 Deletion Syndrome/pathology , Cell Differentiation , Embryonic Stem Cells/cytology , Pharynx/embryology , 22q11 Deletion Syndrome/genetics , Animals , Cell Lineage , Embryonic Stem Cells/metabolism , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Pharynx/cytology , Phenotype , T-Box Domain Proteins/genetics , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
Development ; 144(24): 4616-4624, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29061637

ABSTRACT

During mammalian embryogenesis, cardiac progenitor cells constituting the second heart field (SHF) give rise to the right ventricle and primitive outflow tract (OFT). In zebrafish, previous lineage-tracing and mutant analyses suggested that SHF ventricular and OFT progenitors co-migrate to the arterial pole of the zebrafish heart tube soon after their specification in the nkx2.5+ field of anterior lateral plate mesoderm (ALPM). Using additional prospective lineage tracing, we demonstrate that while SHF ventricular progenitors migrate directly to the arterial pole, OFT progenitors become temporarily sequestered in the mesodermal cores of pharyngeal arch 2 (PA2), where they downregulate nkx2.5 expression. While there, they intermingle with precursors for PA2-derived head muscles (HMs) and hypobranchial artery endothelium, which we demonstrate are co-specified with SHF progenitors in the nkx2.5+ ALPM. Soon after their sequestration in PA2, OFT progenitors migrate to the arterial pole of the heart and differentiate into OFT lineages. Lastly, we demonstrate that SHF ventricular and OFT progenitors exhibit unique sensitivities to a mutation in fgf8a Our data highlight novel aspects of SHF, OFT and HM development in zebrafish that will inform mechanistic interpretations of cardiopharyngeal phenotypes in zebrafish models of human congenital disorders.


Subject(s)
Heart Defects, Congenital/embryology , Heart Ventricles/embryology , Stem Cells/cytology , Zebrafish/embryology , Animals , Branchial Region/metabolism , Cell Lineage , Cell Movement/physiology , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , Heart Ventricles/metabolism , Homeobox Protein Nkx-2.5/biosynthesis , Mesoderm/metabolism , Myocardium/cytology , Myocardium/metabolism , Signal Transduction/genetics , Zebrafish/genetics , Zebrafish Proteins/biosynthesis , Zebrafish Proteins/genetics
5.
Cell Rep ; 20(4): 973-983, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28746880

ABSTRACT

The pharyngeal arch arteries (PAAs) are transient embryonic blood vessels that mature into critical segments of the aortic arch and its branches. Although defects in PAA development cause life-threating congenital cardiovascular defects, the molecular mechanisms that orchestrate PAA morphogenesis remain unclear. Through small-molecule screening in zebrafish, we identified TGF-ß signaling as indispensable for PAA development. Specifically, chemical inhibition of the TGF-ß type I receptor ALK5 impairs PAA development because nkx2.5+ PAA progenitor cells fail to differentiate into tie1+ angioblasts. Consistent with this observation, we documented a burst of ALK5-mediated Smad3 phosphorylation within PAA progenitors that foreshadows angioblast emergence. Remarkably, premature induction of TGF-ß receptor activity stimulates precocious angioblast differentiation, thereby demonstrating the sufficiency of this pathway for initiating the PAA progenitor to angioblast transition. More broadly, these data uncover TGF-ß as a rare signaling pathway that is necessary and sufficient for angioblast lineage commitment.


Subject(s)
Arteries/cytology , Branchial Region/blood supply , Transforming Growth Factor beta/metabolism , Zebrafish Proteins/metabolism , Animals , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Signal Transduction , Zebrafish , Zebrafish Proteins/genetics
6.
Anesthesiology ; 121(2): 290-301, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24777068

ABSTRACT

BACKGROUND: R-etomidate possesses unique desirable properties but potently suppresses adrenocortical function. Consequently, efforts are being made to define structure-activity relationships with the goal of designing analogues with reduced adrenocortical toxicity. The authors explored the pharmacological impact of modifying etomidate's chiral center using R-etomidate, S-etomidate, and two achiral etomidate analogues (cyclopropyl etomidate and dihydrogen etomidate). METHODS: The γ-aminobutyric acid type A receptor modulatory potencies of drugs were assessed in oocyte-expressed α1(L264T)ß3γ2L and α1(L264T)ß1γ2L γ-aminobutyric acid type A receptors (for each drug, n = 6 oocytes per subtype). In rats, hypnotic potencies and durations of action were measured using a righting reflex assay (n = 26 to 30 doses per drug), and adrenocortical potencies were quantified by using an adrenocorticotropic hormone stimulation test (n = 20 experiments per drug). RESULTS: All four drugs activated both γ-aminobutyric acid type A receptor subtypes in vitro and produced hypnosis and suppressed adrenocortical function in rats. However, drug potencies in each model ranged by 1 to 2 orders of magnitude. R-etomidate had the highest γ-aminobutyric acid type A receptor modulatory, hypnotic, and adrenocortical inhibitory potencies. Respectively, R-etomidate, S-etomidate, and cyclopropyl etomidate were 27.4-, 18.9-, and 23.5-fold more potent activators of receptors containing ß3 subunits than ß1 subunits; however, dihydrogen etomidate's subunit selectivity was only 2.48-fold and similar to that of propofol (2.08-fold). S-etomidate was 1/23rd as potent an adrenocortical inhibitor as R-etomidate. CONCLUSION: The linkage between the structure of etomidate's chiral center and its pharmacology suggests that altering etomidate's chiral center may be used as part of a strategy to design analogues with more desirable adrenocortical activities and/or subunit selectivities.


Subject(s)
Anesthetics, Intravenous/chemistry , Anesthetics, Intravenous/pharmacology , Carbon/chemistry , Etomidate/analogs & derivatives , Etomidate/pharmacology , Adrenal Cortex/drug effects , Adrenal Cortex Diseases/chemically induced , Adrenal Cortex Diseases/pathology , Anesthetics, Intravenous/toxicity , Animals , Etomidate/chemistry , Female , GABA Agonists/chemical synthesis , GABA Agonists/chemistry , GABA Agonists/pharmacology , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Indicators and Reagents , Lethal Dose 50 , Male , Molecular Conformation , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/drug effects , Solubility , Stereoisomerism , Structure-Activity Relationship , Xenopus laevis
7.
Anesth Analg ; 118(3): 563-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24557104

ABSTRACT

BACKGROUND: Cyclopropyl-methoxycarbonyl metomidate (CPMM) is a "soft" etomidate analogue currently being developed as a propofol alternative for anesthetic induction and maintenance. METHODS: We compared the potencies of CPMM and propofol by assessing their abilities to directly activate α1(L264T)ß3γ2 gamma-aminobutyric acid type A (GABAA) receptors and induce loss of righting reflexes in tadpoles. We also measured the rates of encephalographic recovery in rats after CPMM and propofol infusions ranging in duration from 5 to 120 minutes. RESULTS: CPMM and propofol activate GABAA receptors and induce loss of righting reflexes in tadpoles with respective 50% effective concentrations (EC50s) of 3.8 ± 0.4 and 3.9 ± 0.2 µM (GABAA receptor) and 2.6 ± 0.19 and 1.3 ± 0.04 µM (tadpole). Encephalographic recovery after prolonged infusion was faster with CPMM and lacked propofol's context sensitivity. CONCLUSION: CPMM and propofol have similar potencies in GABAA receptors and tadpoles; however, CPMM provides more rapid and predictable recovery than propofol, particularly after prolonged infusion.


Subject(s)
Anesthetics, Intravenous/pharmacology , Etomidate/analogs & derivatives , Propofol/pharmacology , Animals , Electroencephalography/drug effects , Electroencephalography/methods , Etomidate/pharmacology , Female , Larva , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Reflex, Righting/drug effects , Reflex, Righting/physiology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL