Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 12: 780327, 2021.
Article in English | MEDLINE | ID: mdl-35069682

ABSTRACT

As gene drive mosquito projects advance from contained laboratory testing to semi-field testing and small-scale field trials, there is a need to assess monitoring requirements to: i) assist with the effective introduction of the gene drive system at field sites, and ii) detect unintended spread of gene drive mosquitoes beyond trial sites, or resistance mechanisms and non-functional effector genes that spread within trial and intervention sites. This is of particular importance for non-localized gene drive projects, as the potential scale of intervention means that monitoring is expected to be more costly than research, development and deployment. Regarding monitoring needs for population replacement systems, lessons may be learned from experiences with Wolbachia-infected mosquitoes, and for population suppression systems, from experiences with releases of genetically sterile male mosquitoes. For population suppression systems, assessing monitoring requirements for tracking population size and detecting rare resistant alleles are priorities, while for population replacement systems, allele frequencies must be tracked, and pressing concerns include detection of gene drive alleles with non-functional effector genes, and resistance of pathogens to functional effector genes. For spread to unintended areas, open questions relate to the optimal density and placement of traps and frequency of sampling in order to detect gene drive alleles, drive-resistant alleles or non-functional effector genes while they can still be effectively managed. Invasive species management programs face similar questions, and lessons may be learned from these experiences. We explore these monitoring needs for gene drive mosquito projects progressing through the phases of pre-release, release and post-release.

2.
J Med Entomol ; 57(4): 1228-1238, 2020 07 04.
Article in English | MEDLINE | ID: mdl-32266939

ABSTRACT

The Aedes aegypti mosquito is the primary vector of dengue, yellow fever, chikungunya, and Zika viruses. Infection with the dengue virus alone occurs in an estimated 400 million people each year. Likelihood of infection with a virus transmitted by Ae. aegypti is most commonly attributed to abundance of the mosquito. However, the Arizona-Sonora desert region has abundant Ae. aegypti in most urban areas, yet local transmission of these arboviruses has not been reported in many of these cities. Previous work examined the role of differential Ae. aegypti longevity as a potential explanation for these discrepancies in transmission. To determine factors that were associated with Ae. aegypti longevity in the region, we collected eggs from ovitraps in Tucson, AZ and reared them under multiple experimental conditions in the laboratory to examine the relative impact of temperature and crowding during development, body size, fecundity, and relative humidity during the adult stage. Of the variables studied, we found that the combination of temperature during development, relative humidity, and body size produced the best model to explain variation in age at death. El mosquito Aedes aegypti es el vector primario de los virus de dengue, fiebre amarilla, chikungunya y Zika. Solamente las infecciones con los virus de dengue ocurren en aproximadamente 400 millones de personas cada año. La probabilidad de infección con un virus transmitido por Ae. aegypti es frecuentemente atribuido a la abundancia del mosquito. No obstante, la región del desierto de Arizona-Sonora tiene una abundancia de Ae. aegypti en la mayoría de las áreas urbanas, pero la transmisión local de estos arbovirus no ha sido reportada en muchas de estas ciudades. Trabajos previos han examinado el rol de las diferencias de longevidad en Ae. aegypti como explicación potencial por estas discrepancias en la transmisión. Para determinar que factores fueron asociados con longevidad en Ae. aegypti en la región, colectamos huevos de ovitrampas en Tucson, Arizona y los criamos debajo de múltiples condiciones experimentales en el laboratorio para examinar el impacto relativo de temperatura y competencia para nutrición durante desarrollo, tamaño del cuerpo, capacidad reproductiva, y humedad relativa durante adultez. De las variables estudiados, encontramos que la combinación de temperatura durante desarrollo, humedad relativa, y tamaño del cuerpo produjo el mejor modelo para explicar variación en edad al tiempo de la muerte.


Subject(s)
Aedes/physiology , Body Size , Longevity , Mosquito Vectors/physiology , Animals , Arizona , Female
3.
PLoS One ; 7(10): e46946, 2012.
Article in English | MEDLINE | ID: mdl-23077536

ABSTRACT

Aedes aegypti, the primary vector of dengue virus, is well established throughout urban areas of the Southwestern US, including Tucson, AZ. Local transmission of the dengue virus, however, has not been reported in this area. Although many factors influence the distribution of the dengue virus, we hypothesize that one contributing factor is that the lifespan of female Ae. aegypti mosquitoes in the Southwestern US is too short for the virus to complete development and be transmitted to a new host. To test this we utilized two age grading techniques. First, we determined parity by analyzing ovarian tracheation and found that only 40% of Ae. aegypti females collected in Tucson, AZ were parous. The second technique determined transcript levels of an age-associated gene, Sarcoplasmic calcium-binding protein 1 (SCP-1). SCP-1 expression decreased in a predictable manner as the age of mosquitoes increased regardless of rearing conditions and reproductive status. We developed statistical models based on parity and SCP-1 expression to determine the age of individual, field collected mosquitoes within three age brackets: nonvectors (0-5 days post-emergence), unlikely vectors (6-14 days post-emergence), and potential vectors (15+ days post-emergence). The statistical models allowed us to accurately group individual wild mosquitoes into the three age brackets with high confidence. SCP-1 expression levels of individual, field collected mosquitoes were analyzed in conjunction with parity status. Based on SCP-1 transcript levels and parity data, 9% of collected mosquitoes survived more than 15 days post emergence.


Subject(s)
Aedes/virology , Calcium-Binding Proteins/genetics , Dengue Virus/pathogenicity , Dengue/transmission , Insect Proteins/genetics , Insect Vectors/virology , Aedes/genetics , Aging , Animals , Female , Gene Expression Regulation, Developmental , Genes, Insect , Humans , Insect Vectors/genetics , Southwestern United States
SELECTION OF CITATIONS
SEARCH DETAIL
...