Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(1): 113622, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38159274

ABSTRACT

While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.


Subject(s)
Ataxia Telangiectasia , Humans , Ataxia Telangiectasia/genetics , Microglia/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Neurons/metabolism , Cytokines/metabolism
2.
bioRxiv ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37986960

ABSTRACT

Aging brings dysregulation of various processes across organs and tissues, often stemming from stochastic damage to individual cells over time. Here, we used a combination of single-nucleus RNA-sequencing and single-cell whole-genome sequencing to identify transcriptomic and genomic changes in the prefrontal cortex of the human brain across life span, from infancy to centenarian. We identified infant-specific cell clusters enriched for the expression of neurodevelopmental genes, and a common down-regulation of cell-essential homeostatic genes that function in ribosomes, transport, and metabolism during aging across cell types. Conversely, expression of neuron-specific genes generally remains stable throughout life. We observed a decrease in specific DNA repair genes in aging, including genes implicated in generating brain somatic mutations as indicated by mutation signature analysis. Furthermore, we detected gene-length-specific somatic mutation rates that shape the transcriptomic landscape of the aged human brain. These findings elucidate critical aspects of human brain aging, shedding light on transcriptomic and genomics dynamics.

3.
Nat Commun ; 13(1): 5918, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207339

ABSTRACT

Replication errors and various genotoxins cause DNA double-strand breaks (DSBs) where error-prone repair creates genomic mutations, most frequently focal deletions, and defective repair may lead to neurodegeneration. Despite its pathophysiological importance, the extent to which faulty DSB repair alters the genome, and the mechanisms by which mutations arise, have not been systematically examined reflecting ineffective methods. Here, we develop PhaseDel, a computational method to detect focal deletions and characterize underlying mechanisms in single-cell whole genome sequences (scWGS). We analyzed high-coverage scWGS of 107 single neurons from 18 neurotypical individuals of various ages, and found that somatic deletions increased with age and in highly expressed genes in human brain. Our analysis of 50 single neurons from DNA repair-deficient diseases with progressive neurodegeneration (Cockayne syndrome, Xeroderma pigmentosum, and Ataxia telangiectasia) reveals elevated somatic deletions compared to age-matched controls. Distinctive mechanistic signatures and transcriptional associations suggest roles for somatic deletions in neurodegeneration.


Subject(s)
DNA Repair-Deficiency Disorders , DNA Repair , Aging/genetics , DNA/genetics , DNA Repair/genetics , Humans , Mutagens , Neurons , Prevalence
4.
Nucleic Acids Res ; 50(5): 2700-2718, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35212385

ABSTRACT

The autosomal recessive genome instability disorder Ataxia-telangiectasia, caused by mutations in ATM kinase, is characterized by the progressive loss of cerebellar neurons. We find that DNA damage associated with ATM loss results in dysfunctional behaviour of human microglia, immune cells of the central nervous system. Microglial dysfunction is mediated by the pro-inflammatory RELB/p52 non-canonical NF-κB transcriptional pathway and leads to excessive phagocytic clearance of neuronal material. Activation of the RELB/p52 pathway in ATM-deficient microglia is driven by persistent DNA damage and is dependent on the NIK kinase. Activation of non-canonical NF-κB signalling is also observed in cerebellar microglia of individuals with Ataxia-telangiectasia. These results provide insights into the underlying mechanisms of aberrant microglial behaviour in ATM deficiency, potentially contributing to neurodegeneration in Ataxia-telangiectasia.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Ataxia Telangiectasia , DNA Damage , Microglia , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/pathology , Ataxia Telangiectasia Mutated Proteins/metabolism , Humans , Microglia/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism
5.
J Physiol Paris ; 108(1): 3-10, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24270042

ABSTRACT

Mapping neuronal responses in the lateral geniculate nucleus (LGN) is key to understanding how visual information is processed in the brain. This paper focuses on our current knowledge of the dynamics the receptive field (RF) as broken down into the classical receptive field (CRF) and the extra-classical receptive field (ECRF) in primate LGN. CRFs in the LGN are known to be similar to those in the retinal ganglion cell layer in terms of both spatial and temporal characteristics, leading to the standard interpretation of the LGN as a relay center from retina to primary visual cortex. ECRFs have generally been found to be large and inhibitory, with some differences in magnitude between the magno-, parvo-, and koniocellular pathways. The specific contributions of the retina, thalamus, and visual cortex to LGN ECRF properties are presently unknown. Some reports suggest a retinal origin for extra-classical suppression based on latency arguments and other reports have suggested a thalamic origin for extra-classical suppression. This issue is complicated by the use of anesthetized animals, where cortical activity is likely to be altered. Thus further study of LGN ECRFs is warranted to reconcile these discrepancies. Producing descriptions of RF properties of LGN neurons could be enhanced by employing preferred naturalistic stimuli. Although there has been significant work in cats with natural scene stimuli and noise that statistically imitates natural scenes, we highlight a need for similar data from primates. Obtaining these data may be aided by recent advancements in experimental and analytical techniques that permit the efficient study of nonlinear RF characteristics in addition to traditional linear factors. In light of the reviewed topics, we conclude by suggesting experiments to more clearly elucidate the spatial and temporal structure of ECRFs of primate LGN neurons.


Subject(s)
Brain Mapping/methods , Geniculate Bodies/physiology , Visual Fields/physiology , Visual Pathways/physiology , Animals , Humans , Macaca , Photic Stimulation/methods , Visual Cortex/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...