Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D1668-D1676, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37994696

ABSTRACT

Europe PMC (https://europepmc.org/) is an open access database of life science journal articles and preprints, which contains over 42 million abstracts and over 9 million full text articles accessible via the website, APIs and bulk download. This publication outlines new developments to the Europe PMC platform since the last database update in 2020 (1) and focuses on five main areas. (i) Improving discoverability, reproducibility and trust in preprints by indexing new preprint content, enriching preprint metadata and identifying withdrawn and removed preprints. (ii) Enhancing support for text and data mining by expanding the types of annotations provided and developing the Europe PMC Annotations Corpus, which can be used to train machine learning models to increase their accuracy and precision. (iii) Developing the Article Status Monitor tool and email alerts, to notify users about new articles and updates to existing records. (iv) Positioning Europe PMC as an open scholarly infrastructure through increasing the portion of open source core software, improving sustainability and accessibility of the service.


Subject(s)
Biological Science Disciplines , Databases, Bibliographic , Data Mining , Europe , Software , Databases, Bibliographic/standards , Internet
2.
F1000Res ; 7: 261, 2018.
Article in English | MEDLINE | ID: mdl-29721311

ABSTRACT

We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

3.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-30984369

ABSTRACT

Protein family databases are an important tool for biologists trying to dissect the function of proteins. Comparing potential new families to the thousands of existing entries is an important task when operating a protein family database. This comparison helps to understand whether a collection of protein regions forms a novel family or has overlaps with existing families of proteins. In this paper, we describe a method for performing this analysis with an adjustable level of accuracy, depending on the desired speed, enabling interactive comparisons. This method is based upon the MinHash algorithm, which we have further extended to calculate the Jaccard containment rather than the Jaccard index of the original MinHash technique. Testing this method with the Pfam protein family database, we are able to compare potential new families to the over 17,000 existing families in Pfam in less than a second, with little loss in accuracy.


Subject(s)
Algorithms , Computational Biology/methods , Databases, Protein , Proteins/classification , Proteins/metabolism , Proteome/analysis , Humans , Proteins/genetics , Sequence Alignment , Software
4.
Curr Protoc Bioinformatics ; 60: 3.15.1-3.15.23, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29220076

ABSTRACT

Protein sequence similarity search is one of the most commonly used bioinformatics methods for identifying evolutionarily related proteins. In general, sequences that are evolutionarily related share some degree of similarity, and sequence-search algorithms use this principle to identify homologs. The requirement for a fast and sensitive sequence search method led to the development of the HMMER software, which in the latest version (v3.1) uses a combination of sophisticated acceleration heuristics and mathematical and computational optimizations to enable the use of profile hidden Markov models (HMMs) for sequence analysis. The HMMER Web server provides a common platform by linking the HMMER algorithms to databases, thereby enabling the search for homologs, as well as providing sequence and functional annotation by linking external databases. This unit describes three basic protocols and two alternate protocols that explain how to use the HMMER Web server using various input formats and user defined parameters. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Databases, Protein , Sequence Homology, Amino Acid , Software , Algorithms , Computational Biology , Humans , Internet , Markov Chains , Proteins , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...