Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Cells ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36497055

ABSTRACT

Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).


Subject(s)
DNA Breaks, Double-Stranded , Radiation, Ionizing , G2 Phase Cell Cycle Checkpoints , Reactive Oxygen Species , Signal Transduction
2.
Genes Dev ; 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35902118

ABSTRACT

The PBRM1 subunit of the PBAF (SWI/SNF) chromatin remodeling complex is mutated in ∼40% of clear cell renal cancers. PBRM1 loss has been implicated in responses to immunotherapy in renal cancer, but the mechanism is unclear. DNA damage-induced inflammatory signaling is an important factor determining immunotherapy response. This response is kept in check by the G2/M checkpoint, which prevents progression through mitosis with unrepaired damage. We found that in the absence of PBRM1, p53-dependent p21 up-regulation is delayed after DNA damage, leading to defective transcriptional repression by the DREAM complex and premature entry into mitosis. Consequently, DNA damage-induced inflammatory signaling pathways are activated by cytosolic DNA. Notably, p53 is infrequently mutated in renal cancer, so PBRM1 mutational status is critical to G2/M checkpoint maintenance. Moreover, we found that the ability of PBRM1 deficiency to predict response to immunotherapy correlates with expression of the cytosolic DNA-sensing pathway in clinical samples. These findings have implications for therapeutic responses in renal cancer.

3.
Genes (Basel) ; 12(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34573351

ABSTRACT

Ataxia telangiectasia mutated (ATM) is a central kinase that activates an extensive network of responses to cellular stress via a signaling role. ATM is activated by DNA double strand breaks (DSBs) and by oxidative stress, subsequently phosphorylating a plethora of target proteins. In the last several decades, newly developed molecular biological techniques have uncovered multiple roles of ATM in response to DNA damage-e.g., DSB repair, cell cycle checkpoint arrest, apoptosis, and transcription arrest. Combinational dysfunction of these stress responses impairs the accuracy of repair, consequently leading to dramatic sensitivity to ionizing radiation (IR) in ataxia telangiectasia (A-T) cells. In this review, we summarize the roles of ATM that focus on DSB repair.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia/genetics , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Chromatin/genetics , Chromatin/ultrastructure , Humans , Transcription, Genetic
4.
Sci Rep ; 11(1): 7119, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782505

ABSTRACT

Recent clinical trials in breast and prostate cancer have established that fewer, larger daily doses (fractions) of radiotherapy are safe and effective, but these do not represent personalised dosing on a patient-by-patient basis. Understanding cell and molecular mechanisms determining fraction size sensitivity is essential to fully exploit this therapeutic variable for patient benefit. The hypothesis under test in this study is that fraction size sensitivity is dependent on the presence of wild-type (WT) p53 and intact non-homologous end-joining (NHEJ). Using single or split-doses of radiation in a range of normal and malignant cells, split-dose recovery was determined using colony-survival assays. Both normal and tumour cells with WT p53 demonstrated significant split-dose recovery, whereas Li-Fraumeni fibroblasts and tumour cells with defective G1/S checkpoint had a large S/G2 component and lost the sparing effect of smaller fractions. There was lack of split-dose recovery in NHEJ-deficient cells and DNA-PKcs inhibitor increased sensitivity to split-doses in glioma cells. Furthermore, siRNA knockdown of p53 in fibroblasts reduced split-dose recovery. In summary, cells defective in p53 are less sensitive to radiotherapy fraction size and lack of split-dose recovery in DNA ligase IV and DNA-PKcs mutant cells suggests the dependence of fraction size sensitivity on intact NHEJ.


Subject(s)
Radiotherapy Dosage , Tumor Suppressor Protein p53/physiology , Cell Line, Tumor , DNA/radiation effects , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Humans , Radiation Tolerance
6.
DNA Repair (Amst) ; 93: 102915, 2020 09.
Article in English | MEDLINE | ID: mdl-33087281

ABSTRACT

In mammalian cells, the mediator protein, 53BP1, exerts distinct impacts on the repair of DNA double strand breaks (DSBs) depending on the setting, for example whether the DSBs arise at telomeres or during replication or class switch recombination. Here, we focus on two roles of 53BP1 in response to ionising radiation (IR)-induced DSBs (IR-DSBs). Canonical DNA non-homologous end-joining (c-NHEJ) is the major DSB repair pathway with homologous recombination (HR) contributing to DSB repair in S/G2 phase. ATM signalling promotes histone modifications and protein assembly in the DSB vicinity, which can be visualised as irradiation induced foci (IRIF). 53BP1 assembles at DSBs in a complex manner involving the formation of nano-domains. In G1 and G2 phase, X- or gamma-ray induced DSBs are repaired with biphasic kinetics. 70-80 % of DSBs are repaired with fast kinetics in both cell cycle phases by c-NHEJ; the remaining DSBs are repaired with slower kinetics in G2 phase via HR and in G1 by a specialised form of c-NHEJ termed Artemis and resection-dependent c-NHEJ, due to a specific requirement for the nuclease, Artemis and resection factors. 53BP1 is essential for the repair of DSBs rejoined with slow kinetics in G1 and G2 phase. This 53BP1 function requires its tandem BRCT domain and interaction with NBS1. As a distinct function, 53BP1 suppresses resection during both HR and Artemis and resection-dependent c-NHEJ. This latter role requires RIF1 and is counteracted by BRCA1. 53BP1 appears to be dispensable for the rejoining of the fast c-NHEJ repair process.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Radiation, Ionizing , Recombinational DNA Repair , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Cycle , DNA/metabolism , DNA/radiation effects , Humans
7.
J Radiat Res ; 61(5): 718-726, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32779701

ABSTRACT

p53-binding protein 1 (53BP1) exerts distinct impacts in different situations involving DNA double-strand break (DSB) rejoining. Here we focus on how 53BP1 impacts upon the repair of ionising radiation-induced DSBs (IR-DSBs) and how it interfaces with Ku, the DNA end-binding component of canonical non-homologous end-joining (c-NHEJ), the major DSB repair pathway in mammalian cells. We delineate three forms of IR-DSB repair: resection-independent c-NHEJ, which rejoins most IR-DSBs with fast kinetics in G1 and G2, and Artemis and resection-dependent c-NHEJ and homologous recombination (HR), which repair IR-DSBs with slow kinetics in G1 and G2 phase, respectively. The fast component of DSB repair after X-ray exposure occurs via c-NHEJ with normal kinetics in the absence of 53BP1. Ku is highly abundant and has avid DNA end-binding capacity which restricts DNA end-resection and promotes resection-independent c-NHEJ at most IR-DSBs. Thus, 53BP1 is largely dispensable for resection-independent c-NHEJ. In contrast, 53BP1 is essential for the process of rejoining IR-DSBs with slow kinetics. This role requires 53BP1's breast cancer susceptibility gene I (BRCA1) C-terminal (BRCT) 2 domain, persistent ataxia telangiectasia mutated (ATM) activation and potentially relaxation of compacted chromatin at heterochromatic-DSBs. In distinction, 53BP1 inhibits resection-dependent IR-DSB repair in G1 and G2, and this resection-inhibitory function can be counteracted by BRCA1. We discuss a model whereby most IR-DSBs are rapidly repaired by 53BP1-independent and resection-independent c-NHEJ due to the ability of Ku to inhibit resection, but, if delayed, then resection in the presence of Ku is triggered, the 53BP1 barrier comes into force and BRCA1 counteraction is required for resection.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Animals , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Humans , Radiation, Ionizing , Transcription, Genetic
9.
Br J Radiol ; 93(1115): 20190966, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-31944860

ABSTRACT

The significance of canonical DNA non-homologous end-joining (c-NHEJ) for DNA double strand break (DSB) repair has increased from lower organisms to higher eukaryotes, and plays the predominant role in human cells. Ku, the c-NHEJ end-binding component, binds DSBs with high efficiency enabling c-NHEJ to be the first choice DSB repair pathway, although alternative pathways can ensue after regulated steps to remove Ku. Indeed, radiation-induced DSBs are repaired rapidly in human cells. However, an important question is the fidelity with which radiation-induced DSBs are repaired, which is essential for assessing any harmful impacts caused by radiation exposure. Indeed, is compromised fidelity a price we pay for high capacity repair. Two subpathways of c-NHEJ have been revealed; a fast process that does not require nucleases or significant chromatin changes and a slower process that necessitates resection factors, and potentially more significant chromatin changes at the DSB. Recent studies have also shown that DSBs within transcriptionally active regions are repaired by specialised mechanisms, and the response at such DSBs encompasses a process of transcriptional arrest. Here, we consider the limitations of c-NHEJ that might result in DSB misrepair. We consider the common IR-induced misrepair events and discuss how they might arise via the distinct subpathways of c-NHEJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair/physiology , DNA Mismatch Repair/physiology , Chromatin/physiology , DNA/radiation effects , G1 Phase/genetics , G2 Phase/genetics , Humans , Ku Autoantigen/physiology , Resting Phase, Cell Cycle/genetics , Transcription Termination, Genetic/physiology , Transcriptional Activation/physiology
10.
Int J Radiat Biol ; 96(2): 167-171, 2020 02.
Article in English | MEDLINE | ID: mdl-31702416

ABSTRACT

The 16th International Congress of Radiation Research (ICRR2019) was held in Manchester, UK, in August 2019. The Congress, which is held every four years, covered a wide spectrum of topics relevant for all aspects of radiation research including basic mechanisms, translational research, radiotherapy and health effects, and ecology. Here, we provide a report of the plenary and keynote talks presented at the meeting.


Subject(s)
Radiotherapy/methods , Translational Research, Biomedical/methods , Brain/radiation effects , Cosmic Radiation , DNA/radiation effects , DNA Damage , DNA Repair , Humans , Interdisciplinary Communication , International Cooperation , Neoplasms/radiotherapy , Radiotherapy/trends , Translational Research, Biomedical/trends , United Kingdom
11.
Cancer Sci ; 110(11): 3415-3423, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31513320

ABSTRACT

Anti-programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) therapy, which is one of the most promising cancer therapies, is licensed for treating various tumors. Programmed death-ligand 1, which is expressed on the surface of cancer cells, leads to the inhibition of T lymphocyte activation and immune evasion if it binds to the receptor PD-1 on CTLs. Anti-PD-1/PD-L1 Abs inhibit interactions between PD-1 and PD-L1 to restore antitumor immunity. Although certain patients achieve effective responses to anti-PD-1/PD-L1 therapy, the efficacy of treatment is highly variable. Clinical trials of anti-PD-1/PD-L1 therapy combined with radiotherapy/chemotherapy are underway with suggestive evidence of favorable outcome; however, the molecular mechanism is largely unknown. Among several molecular targets that can influence the efficacy of anti-PD-1/PD-L1 therapy, PD-L1 expression in tumors is considered to be a critical biomarker because there is a positive correlation between the efficacy of combined treatment protocols and PD-L1 expression levels. Therefore, understanding the mechanisms underlying the regulation of PD-L1 expression in cancer cells, particularly the mechanism of PD-L1 expression following DNA damage, is important. In this review, we consider recent findings on the regulation of PD-L1 expression in response to DNA damage signaling in cancer cells.


Subject(s)
B7-H1 Antigen/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Neoplasms/metabolism , Precision Medicine , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , Cell Communication , Cell Cycle Checkpoints , Cell Death/physiology , DNA Damage , DNA Fragmentation , DNA, Neoplasm/drug effects , DNA, Neoplasm/radiation effects , Humans , Lymphocyte Activation , Membrane Proteins/metabolism , Microsatellite Instability , Mutation , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Nucleotidyltransferases/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA, Messenger/metabolism , Tumor Escape , Up-Regulation
12.
13.
Mol Cell ; 73(2): 212-223.e7, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30554942

ABSTRACT

Cohesin subunits are frequently mutated in cancer, but how they function as tumor suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not always perturbed in cancer cells. Here, we identify a previously unknown role for cohesin. We find that cohesin is required to repress transcription at DNA double-strand breaks (DSBs). Notably, cohesin represses transcription at DSBs throughout interphase, indicating that this is distinct from its known role in mediating DNA repair through sister chromatid cohesion. We identified a cancer-associated SA2 mutation that supports sister chromatid cohesion but is unable to repress transcription at DSBs. We further show that failure to repress transcription at DSBs leads to large-scale genome rearrangements. Cancer samples lacking SA2 display mutational patterns consistent with loss of this pathway. These findings uncover a new function for cohesin that provides insights into its frequent loss in cancer.


Subject(s)
Bone Neoplasms/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Breaks, Double-Stranded , Genomic Instability , Interphase , Osteosarcoma/genetics , Transcription, Genetic , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , DNA Repair , Down-Regulation , G1 Phase , G2 Phase , Gene Expression Regulation, Neoplastic , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Cohesins
14.
PLoS Genet ; 14(3): e1007277, 2018 03.
Article in English | MEDLINE | ID: mdl-29590107

ABSTRACT

The p300 and CBP histone acetyltransferases are recruited to DNA double-strand break (DSB) sites where they induce histone acetylation, thereby influencing the chromatin structure and DNA repair process. Whether p300/CBP at DSB sites also acetylate non-histone proteins, and how their acetylation affects DSB repair, remain unknown. Here we show that p300/CBP acetylate RAD52, a human homologous recombination (HR) DNA repair protein, at DSB sites. Using in vitro acetylated RAD52, we identified 13 potential acetylation sites in RAD52 by a mass spectrometry analysis. An immunofluorescence microscopy analysis revealed that RAD52 acetylation at DSBs sites is counteracted by SIRT2- and SIRT3-mediated deacetylation, and that non-acetylated RAD52 initially accumulates at DSB sites, but dissociates prematurely from them. In the absence of RAD52 acetylation, RAD51, which plays a central role in HR, also dissociates prematurely from DSB sites, and hence HR is impaired. Furthermore, inhibition of ataxia telangiectasia mutated (ATM) protein by siRNA or inhibitor treatment demonstrated that the acetylation of RAD52 at DSB sites is dependent on the ATM protein kinase activity, through the formation of RAD52, p300/CBP, SIRT2, and SIRT3 foci at DSB sites. Our findings clarify the importance of RAD52 acetylation in HR and its underlying mechanism.


Subject(s)
DNA Breaks, Double-Stranded , Histone Acetyltransferases/physiology , Histone Deacetylases/physiology , Homologous Recombination , Rad52 DNA Repair and Recombination Protein/metabolism , Acetylation , Ataxia Telangiectasia Mutated Proteins/metabolism , Histone Acetyltransferases/genetics , Histone Deacetylases/genetics , Humans , Microscopy, Fluorescence , Two-Hybrid System Techniques
15.
Oncotarget ; 8(55): 93317-93318, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29212151
16.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28904138

ABSTRACT

Exposure to ionizing radiation is ubiquitous, and it is well established that moderate and high doses cause ill-health and can be lethal. The health effects of low doses or low dose-rates of ionizing radiation are not so clear. This paper describes a project which sets out to summarize, as a restatement, the natural science evidence base concerning the human health effects of exposure to low-level ionizing radiation. A novel feature, compared to other reviews, is that a series of statements are listed and categorized according to the nature and strength of the evidence that underpins them. The purpose of this restatement is to provide a concise entrée into this vibrant field, pointing the interested reader deeper into the literature when more detail is needed. It is not our purpose to reach conclusions on whether the legal limits on radiation exposures are too high, too low or just right. Our aim is to provide an introduction so that non-specialist individuals in this area (be they policy-makers, disputers of policy, health professionals or students) have a straightforward place to start. The summary restatement of the evidence and an extensively annotated bibliography are provided as appendices in the electronic supplementary material.


Subject(s)
Radiation Exposure/adverse effects , Radiation, Ionizing , Humans
18.
PLoS Biol ; 15(5): e2001264, 2017 05.
Article in English | MEDLINE | ID: mdl-28489848

ABSTRACT

Stem and differentiated cells frequently differ in their response to DNA damage, which can determine tissue sensitivity. By exploiting insight into the spatial arrangement of subdomains within the adult neural subventricular zone (SVZ) in vivo, we show distinct responses to ionising radiation (IR) between neural stem and progenitor cells. Further, we reveal different DNA damage responses between neonatal and adult neural stem cells (NSCs). Neural progenitors (transit amplifying cells and neuroblasts) but not NSCs (quiescent and activated) undergo apoptosis after 2 Gy IR. This response is cell type- rather than proliferation-dependent and does not appear to be driven by distinctions in DNA damage induction or repair capacity. Moreover, exposure to 2 Gy IR promotes proliferation arrest and differentiation in the adult SVZ. These 3 responses are ataxia telangiectasia mutated (ATM)-dependent and promote quiescent NSC (qNSC) activation, which does not occur in the subdomains that lack progenitors. Neuroblasts arising post-IR derive from activated qNSCs rather than irradiated progenitors, minimising damage compounded by replication or mitosis. We propose that rather than conferring sensitive cell death, apoptosis is a form of rapid cell death that serves to remove damaged progenitors and promote qNSC activation. Significantly, analysis of the neonatal (P5) SVZ reveals that although progenitors remain sensitive to apoptosis, they fail to efficiently arrest proliferation. Consequently, their repopulation occurs rapidly from irradiated progenitors rather than via qNSC activation.


Subject(s)
Apoptosis , DNA Damage , Lateral Ventricles/radiation effects , Neural Stem Cells/radiation effects , Animals , Animals, Newborn , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Differentiation , Cell Proliferation/radiation effects , Mice, Inbred C57BL , X-Rays
19.
Mutat Res Rev Mutat Res ; 771: 59-84, 2017.
Article in English | MEDLINE | ID: mdl-28342453

ABSTRACT

Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.


Subject(s)
Biomarkers , Radiation, Ionizing , Adult , Child , DNA Damage , DNA Repair , Genetic Predisposition to Disease , Humans , Radiation Dosage
20.
Mol Cell ; 65(4): 671-684.e5, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28132842

ABSTRACT

Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis.


Subject(s)
Cell Nucleus/radiation effects , DNA Breaks, Double-Stranded , DNA End-Joining Repair/radiation effects , G1 Phase/radiation effects , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Nucleus/enzymology , Cell Nucleus/pathology , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases , Endonucleases , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , G2 Phase , Gene Deletion , HeLa Cells , Humans , Kinetics , MRE11 Homologue Protein , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Translocation, Genetic , Tumor Suppressor Proteins , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...