Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345054

ABSTRACT

Bacterium Halalkalibacterium halodurans is an industrially important alkalophilic bacteria. It is recognized as a producer of enzymes such as ß-galactosidase, xylanase, amylase and protease which are able to function at higher pH values and thus can be used in textile, food, paper industry and more. This bacterium, as any other bacterium, requires a sensitive mechanism for regulation of homeostasis of manganese ions (Mn2+) in order to survive. The key protein regulating this mechanism in H. halodurans is MntR - a transcriptional factor that binds to DNA and regulates the transcription of genes for proteins involved in manganese homeostasis. Long range all-atom molecular dynamics (MD) simulations, from 500 ns up to 1.25 µs, were used to study different forms of H. halodurans MntR in order to investigate the differences in the protein's structural and dynamical properties upon Mn2+ binding. Simulations revealed an allosteric mechanism which is activated by Mn2+ binding. The results of simulations show that Mn2+ binding alters the non-covalent interaction network of the protein structure which leads to a conformational change that primarily affects the positions of the DNA binding domains and, consequently, the DNA binding affinity of H. halodurans MntR. The key amino acid residues of the proposed mechanism were identified and their role in the proposed mechanism was computationally confirmed by MD simulations of in silico mutants.Communicated by Ramaswamy H. Sarma.

2.
Int J Biol Macromol ; 253(Pt 8): 127572, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37866578

ABSTRACT

Divalent metal ions are essential micronutrients for many intercellular reactions. Maintaining their homeostasis is necessary for the survival of bacteria. In Streptococcus gordonii, one of the primary colonizers of the tooth surface, the cellular concentration of manganese ions (Mn2+) is regulated by the manganese-sensing transcriptional factor ScaR which controls the expression of proteins involved in manganese homeostasis. To resolve the molecular mechanism through which the binding of Mn2+ ions increases the binding affinity of ScaR to DNA, a variety of computational (QM and MD) and experimental (ITC, DSC, EMSA, EPR, and CD) methods were applied. The computational results showed that Mn2+ binding induces a conformational change in ScaR that primarily affects the position of the DNA binding domains and, consequently, the DNA binding affinity of the protein. In addition, experimental results revealed a 1:4 binding stoichiometry between ScaR dimer and Mn2+ ions, while the computational results showed that the binding of Mn2+ ions in the primary binding sites is sufficient to induce the observed conformational change of ScaR.


Subject(s)
Bacterial Proteins , Streptococcus gordonii , Humans , Streptococcus gordonii/genetics , Streptococcus gordonii/metabolism , Bacterial Proteins/chemistry , Manganese/metabolism , Cicatrix/metabolism , Binding Sites , DNA/metabolism , Ions , Protein Binding
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674477

ABSTRACT

Manganese (II) ions are essential for a variety of bacterial cellular processes. The transcription factor MntR is a metallosensor that regulates Mn2+ ion homeostasis in the bacterium Bacillus subtilis. Its DNA-binding affinity is increased by Mn2+ ion binding, allowing it to act as a transcriptional repressor of manganese import systems. Although experimentally well-researched, the molecular mechanism that regulates this process is still a puzzle. Computational simulations supported by circular dichroism (CD), differential scanning calorimetry (DSC) and native gel electrophoresis (native-PAGE) experiments were employed to study MntR structural and dynamical properties in the presence and absence of Mn2+ ions. The results of molecular dynamics (MD) simulations revealed that Mn2+ ion binding reduces the structural dynamics of the MntR protein and shifts the dynamic equilibrium towards the conformations adequate for DNA binding. Results of CD and DSC measurements support the computational results showing the change in helical content and stability of the MntR protein upon Mn2+ ion binding. Further, MD simulations show that Mn2+ binding induces polarization of the protein electrostatic potential, increasing the positive electrostatic potential of the DNA-binding helices in particular. In order to provide a deeper understanding of the changes in protein structure and dynamics due to Mn2+ binding, a mutant in which Mn2+ binding is mimicked by a cysteine bridge was constructed and also studied computationally and experimentally.


Subject(s)
Manganese , Transcription Factors , Transcription Factors/metabolism , Manganese/metabolism , Repressor Proteins/genetics , Bacillus subtilis/genetics , Binding Sites , Bacterial Proteins/metabolism , DNA/metabolism
4.
Nucleic Acids Res ; 50(W1): W152-W158, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35544315

ABSTRACT

In the last decade, significant advances have been made towards the rational design of proteins, DNA, and other organic nanostructures. The emerging possibility to precisely engineer molecular structures resulted in a wide range of new applications in fields such as biotechnology or medicine. The complexity and size of the artificial molecular systems as well as the number of interactions are greatly increasing and are manifesting the need for computational design support. In addition, a new generation of AI-based structure prediction tools provides researchers with completely new possibilities to generate recombinant proteins and functionalized DNA nanostructures. In this study, we present Catana, a web-based modelling environment suited for proteins and DNA nanostructures. User-friendly features were developed to create and modify recombinant fusion proteins, predict protein structures based on the amino acid sequence, and manipulate DNA origami structures. Moreover, Catana was jointly developed with the novel Unified Nanotechnology Format (UNF). Therefore, it employs a state-of-the-art coarse-grained data model, that is compatible with other established and upcoming applications. A particular focus was put on an effortless data export to allow even inexperienced users to perform in silico evaluations of their designs by means of molecular dynamics simulations. Catana is freely available at http://catana.ait.ac.at/.


Subject(s)
Nanostructures , Nucleic Acids , Nanostructures/chemistry , Nanotechnology/methods , DNA/chemistry , Recombinant Fusion Proteins , Nucleic Acid Conformation
5.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1292-1304, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34605432

ABSTRACT

The mutual penetration of electron densities between two interacting molecules complicates the computation of an accurate electrostatic interaction energy based on a pseudo-atom representation of electron densities. The numerical exact potential and multipole moment (nEP/MM) method is time-consuming since it performs a 3D integration to obtain the electrostatic energy at short interaction distances. Nguyen et al. [(2018), Acta Cryst. A74, 524-536] recently reported a fully analytical computation of the electrostatic interaction energy (aEP/MM). This method performs much faster than nEP/MM (up to two orders of magnitude) and remains highly accurate. A new program library, Charger, contains an implementation of the aEP/MM method. Charger has been incorporated into the MoProViewer software. Benchmark tests on a series of small molecules containing only C, H, N and O atoms show the efficiency of Charger in terms of execution time and accuracy. Charger is also powerful in a study of electrostatic symbiosis between a protein and a ligand. It determines reliable protein-ligand interaction energies even when both contain S atoms. It easily estimates the individual contribution of every residue to the total protein-ligand electrostatic binding energy. Glutathione transferase (GST) in complex with a benzophenone ligand was studied due to the availability of both structural and thermodynamic data. The resulting analysis highlights not only the residues that stabilize the ligand but also those that hinder ligand binding from an electrostatic point of view. This offers new perspectives in the search for mutations to improve the interaction between the two partners. A proposed mutation would improve ligand binding to GST by removing an electrostatic obstacle, rather than by the traditional increase in the number of favourable contacts.


Subject(s)
Benzophenones/metabolism , Glutathione Transferase/metabolism , Models, Molecular , Polyporaceae/enzymology , Software , Static Electricity , Thermodynamics , Benzophenones/chemistry , Glutathione Transferase/chemistry , Hydrogen Bonding , Ligands
6.
PLoS Genet ; 15(12): e1008261, 2019 12.
Article in English | MEDLINE | ID: mdl-31860668

ABSTRACT

Germline genome defense evolves to recognize and suppress retrotransposons. One of defensive mechanisms is the PIWI-associated RNA (piRNA) pathway, which employs small RNAs for sequence-specific repression. The loss of the piRNA pathway in mice causes male sterility while females remain fertile. Unlike spermatogenic cells, mouse oocytes posses also RNA interference (RNAi), another small RNA pathway capable of retrotransposon suppression. To examine whether RNAi compensates the loss of the piRNA pathway, we produced a new RNAi pathway mutant DicerSOM and crossed it with a catalytically-dead mutant of Mili, an essential piRNA gene. Normal follicular and oocyte development in double mutants showed that RNAi does not suppress a strong ovarian piRNA knock-out phenotype. However, we observed redundant and non-redundant targeting of specific retrotransposon families illustrating stochasticity of recognition and targeting of invading retrotransposons. Intracisternal A Particle retrotransposon was mainly targeted by the piRNA pathway, MaLR and RLTR10 retrotransposons were targeted mainly by RNAi. Double mutants showed accumulations of LINE-1 retrotransposon transcripts. However, we did not find strong evidence for transcriptional activation and mobilization of retrotransposition competent LINE-1 elements suggesting that while both defense pathways are simultaneously expendable for ovarian oocyte development, yet another transcriptional silencing mechanism prevents mobilization of LINE-1 elements.


Subject(s)
Oocytes/growth & development , RNA Interference , RNA, Small Interfering/genetics , Retroelements , Animals , Argonaute Proteins/genetics , DEAD-box RNA Helicases/genetics , Female , Mice , Mutation , Oocytes/chemistry , Ribonuclease III/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...