Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Heliyon ; 10(16): e36000, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253202

ABSTRACT

In today's automotive, marine and petrochemical industries, the desire for lightweight materials has increased. Hence, necessitating the production of components with low density. In this work, lightweight Zn-Si3N4 coatings were developed by including Si3N4 in the zinc matrix. The optimal coatings were produced on steel samples at 45 °C and varied Si3N4 particles and voltages following ASTM A53/A53M standard. The deterioration (corrosion) property i.e. corrosion rate (CR) and current density (jocorr) of the uncoated (control) and coated samples were examined in 0.5 M of sulphuric acid using a potentiodynamic polarization technique following ASTM G3/G102 standard. The microstructure of the samples was studied via the SEM micrographs and XRD patterns, while the wear performance resistance (following ASTM G99 standard) and electrical conductivity of the samples were examined with a pin-on-disc tribometer and ammeter-voltmeter. The corrosion experiment indicated that the uncoated mild steel specimen possessed a CR of 12.345 mm year-1 and jocorr of 1060 µA/cm2, while the CR and jcorr of the coated samples ranged from 2.6793 to 4.7975 mm year-1 and 231-413 µA/cm2, respectively. The lower CR and jcorr values of the coated specimens, relative to the coated sample showed that the coatings possessed superior passivation ability in the test medium. The SEM micrographs of the samples showed refined morphology, while the XRD patterns revealed high peak intensity crystals such as Zn4SiN, ZnNSi, Zn4N and Zn2NSi, which could be beneficial to the mechanical properties and corrosion resistance of the steel. Moreover, the wear resistance study indicated that the COF of the uncoated sample ranged from 0.1 to 0.5, while those for coated specimens ranged from 0.05 to 0.35. Similarly, the uncoated steel exhibited a wear volume (WV) of 0.00508 mm3, while the WV of the coated specimens ranged from 0.00266 to 0.0028 mm3, indicating the existence of high strengthening mechanisms between the interface of the protecting device and the steel. Also, the electrical conductivity of the mild steel sample reduced from 12.97 Ω-1cm-1 to 0.64 Ω-1cm-1, indicating that the electrical resistivity of the steel was enhanced by the coatings.

2.
Heliyon ; 10(3): e25349, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333839

ABSTRACT

Cutting fluids are used for cooling and lubricating the machining area of components used in manufacturing industries such as aerospace, automotive, petroleum, and heavy machinery. Mineral oils derived from petroleum are commonly utilized as cutting fluids. Mineral oil is hazardous to the health of workers and damaging to the environment. There is a need for a substitute for mineral oil. Vegetable oil is increasingly being used as a cutting fluid. Vegetable oils are easily accessible and have benefits including excellent biodegradability, resistance to fire, low humidity rates, and a low coefficient of expansion under heat. This study adopts watermelon oil as a lubricant in MQL machining of AISI 1525 steel using tungsten tools. In the experiment, the feed rate, depth of cut (DC) and spindle speed were varied using the Taguchi L9 orthogonal array. Grey relational analysis was conducted to obtain optimum cutting parameters for surface roughness, machine vibration, and cutting temperature. Hardness and microstructural analysis of the workpiece were also conducted. Results showed that vegetable oil performed much more effectively than mineral oil in most experiments. The DC was shown to be the most efficient cutting parameter after applying ANOVA analysis based on the parameters that were evaluated. Additionally, models for cutting temperature, machine vibration, and surface roughness values have been developed with accuracy between 69.73 % and 99.05 %. The hardness of the workpiece increases with an increase in diameter, which was attributed to the increase in the steel rod (workpiece) cross-sectional area and the likelihood of a more uniform stress distribution. Moreover, finer grain sizes were observed at 70 mm diameter, with the predominant presence of pearlites. These characteristics were reportedly beneficial to the material's toughness and strength.

3.
Sci Rep ; 13(1): 1066, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658209

ABSTRACT

The mechanical properties of coconut shell ash (CSA) reinforced polyester composite have been optimized. Various test specimens were developed by dispersing 10, 20, 30 and 40 wt.%, of CSA in unsaturated polyester resin in decreasing particle sizes of 40, 30, and 20 µm in an open mould using hand lay-up technique. Tensile, flexural, and impact strengths, as well as tensile and flexural moduli and Shore D hardness of all test samples were determined. The results showed that 10-20 wt.% CSA increased tensile, flexural, impact strengths and flexural modulus for all particle sizes, but 30-40 wt. % CSA engendered depreciation in corresponding performance. For all particle sizes, 10-40 wt. percent CSA resulted in an increase in tensile strength, whereas 10-40 wt. percent resulted into a linear increase in Shore D hardness. Further observation portrayed that in each case, the finest CSA (20 µm) have the optimum result. Statistical analysis carried out on experimental outcomes confirmed the experimental variables (particle proportion and sizes) to be significant. From the surface plot, the strength responses revealed more dependence on the individual variables than their interactions. Regression models developed for individual responses are termed statistically fit in representing the experimental data.

4.
Heliyon ; 8(5): e09460, 2022 May.
Article in English | MEDLINE | ID: mdl-35647349

ABSTRACT

Titanium dioxide (TiO2) is an important material in science and engineering because of its basic and synthetic properties. Nevertheless, there is a dearth of reports in the open literature focusing on its ability to self-clean under temperature changes. In this study, we used the spin coating technique to produce TiO2 thin films to evaluate its self-cleaning ability after annealing at different temperatures. The TiO2 sol was obtained through an endothermal sol-gel process, and the gel was coated on a glass substrate using a spin coater. The deposited films were then annealed at 400 °C, 600 °C, and 800 °C for 1 h. The influence of annealing temperature variation on the self-cleaning properties of the thin film was characterized using X-ray diffraction, scanning electron microscope; Fourier transformed infrared spectrometric analysis and UV-vis spectrophotometer. A test to ascertain self-cleaning was conducted using the degradation of methylene blue, and the different films were tested for durability. The durability test confirmed the connection between solid coating and substrate at all annealing temperatures. Thin films annealed at 600 °C revealed the best self-cleaning properties. The morphological analysis revealed snowflake shapes uniformly distributed over the substrate at 400 °C, and agglomeration improved as the annealing temperature increased. Structural analysis showed an increase in crystallinity with an increase in annealing temperature for both rutile and anatase phases. At three different temperatures, the chemical bond and the absorption band pattern followed the same path, although the peak intensity declined with temperature rise. Finally, the optical bandgap of the thin coated TiO2 declined from 3.39 eV to 3.20 eV as the binding temperature increased from 400 to 800 °C.

5.
Sci Rep ; 12(1): 4062, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260750

ABSTRACT

The feasibility of joining laser metal deposited Ti6Al4V sheets using laser beam welding was investigated in this article. The additive manufactured sheets were joined using a 3 kW CW YLS-2000-TR ytterbium laser system. The mechanical properties and microstructure of the welded additive manufactured parts (AM welds) were compared with those of the wrought sheets welded using the same laser process. The welds were characterized and compared in terms of bead geometry, microhardness, tensile strength, fractography, and microstructure. The differences in characteristics are majorly found in the width of the bead and tensile strength. The bead width of AM welds appear wider than the wrought welds, and the wrought welds exhibited higher tensile strength and ductility than the AM welds.


Subject(s)
Welding , Alloys , Lasers , Tensile Strength , Titanium/chemistry
6.
Heliyon ; 6(11): e05506, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33251365

ABSTRACT

Aluminium composite materials are beneficial in most engineering applications, most notably, because of their lightweight to strength ratio amongst many others. This study reports the reinforcement of aluminium alloy 8011 with cow horn and corncob in varying weight percentages of 5wt%, 10wt%, 15wt% and 20wt%. This study adopted the Stir casting method based on availability and cost-effectiveness as the cheapest method amongst others. The developed composite materials were in eight different samples alongside one control sample of the aluminium alloy base material. The samples used for this experimental study were tested for tensile strength, hardness and microstructural analysis. The outcome of the study shows that the sample with 20wt% of cow horn reinforcement gave the best-improved properties in terms of yield strength, ultimate tensile strength (UTS) and hardness with percentage improvement of 57%, 52.6% and 54.4% respectively. Hardness was also improved with 52.6% over the control sample with the 15wt% cow horn reinforced sample. Cow horn of 10wt% reinforcement improved the material by 61%. The results shown have justified the relevant effect of agro-waste materials in composite development.

SELECTION OF CITATIONS
SEARCH DETAIL