Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1354413, 2024.
Article in English | MEDLINE | ID: mdl-38766473

ABSTRACT

Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.

2.
Front Plant Sci ; 14: 1221790, 2023.
Article in English | MEDLINE | ID: mdl-37900763

ABSTRACT

Early determination of transgenic plants that are homozygous for a single locus T-DNA insert is highly desirable in most fundamental and applied transgenic research. This study aimed to build on an accurate, rapid, and reliable quantitative real-time PCR (qPCR) method to fast-track the development of multiple homozygous transgenic rice lines in the T1 generation, with low copy number to single T-DNA insert for further analyses. Here, a well-established qPCR protocol, based on the OsSBE4 reference gene and the nos terminator, was optimized in the transgenic Japonica rice cultivar Nipponbare, to distinguish homozygous single-insert plants with 100% accuracy. This method was successfully adapted to transgenic Indica rice plants carrying three different T-DNAs, without any modifications to quickly develop homozygous rice plants in the T1 generation. The accuracy of this qPCR method when applied to transgenic Indica rice approached 100% in 12 putative transgenic lines. Moreover, this protocol also successfully detected homozygous single-locus T-DNA transgenic rice plants with two-transgene T-DNAs, a feature likely to become more popular in future transgenic research. The assay was developed utilizing universal primers targeting common sequence elements of gene cassettes (the nos terminator). This assay could therefore be applied to other transgenic plants carrying the nos terminator. All procedures described here use standardized qPCR reaction conditions and relatively inexpensive dyes, such as SYBR Green, thus the qPCR method could be cost-effective and suitable for lower budget laboratories that are involved in rice transgenic research.

3.
Front Plant Sci ; 13: 876843, 2022.
Article in English | MEDLINE | ID: mdl-36466234

ABSTRACT

Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.

4.
Front Plant Sci ; 13: 948099, 2022.
Article in English | MEDLINE | ID: mdl-36186054

ABSTRACT

Height from soil at the base of plant to the first pod (HFP) is an important trait for mechanical harvesting of legume crops. To minimise the loss of pods, the HFP must be higher than that of the blades of most combine harvesters. Here, we review the genetic control, morphology, and variability of HFP in legumes and attempt to unravel the diverse terminology for this trait in the literature. HFP is directly related to node number and internode length but through different mechanisms. The phenotypic diversity and heritability of HFP and their correlations with plant height are very high among studied legumes. Only a few publications describe a QTL analysis where candidate genes for HFP with confirmed gene expression have been mapped. They include major QTLs with eight candidate genes for HFP, which are involved in auxin transport and signal transduction in soybean [Glycine max (L.) Merr.] as well as MADS box gene SOC1 in Medicago trancatula, and BEBT or WD40 genes located nearby in the mapped QTL in common bean (Phaseolus vulgaris L.). There is no information available about simple and efficient markers associated with HFP, which can be used for marker-assisted selection for this trait in practical breeding, which is still required in the nearest future. To our best knowledge, this is the first review to focus on this significant challenge in legume-based cropping systems.

5.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830037

ABSTRACT

Two genes, HvSAP8 and HvSAP16, encoding Zinc-finger proteins, were identified earlier as active in barley plants. Based on bioinformatics and sequencing analysis, six SNPs were found in the promoter regions of HvSAP8 and one in HvSAP16, among parents of two barley segregating populations, Granal × Baisheshek and Natali × Auksiniai-2. ASQ and Amplifluor markers were developed for HvSAP8 and HvSAP16, one SNP in each gene, and in each of two populations, showing simple Mendelian segregation. Plants of F6 selected breeding lines and parents were evaluated in a soil-based drought screen, revealing differential expression of HvSAP8 and HvSAP16 corresponding with the stress. After almost doubling expression during the early stages of stress, HvSAP8 returned to pre-stress level or was strongly down-regulated in plants with Granal or Baisheshek genotypes, respectively. For HvSAP16 under drought conditions, a high expression level was followed by either a return to original levels or strong down-regulation in plants with Natali or Auksiniai-2 genotypes, respectively. Grain yield in the same breeding lines and parents grown under moderate drought was strongly associated with their HvSAP8 and HvSAP16 genotypes. Additionally, Granal and Natali genotypes with specific alleles at HvSAP8 and HvSAP16 were associated with improved performance under drought via higher 1000 grain weight and more shoots per plant, respectively.


Subject(s)
Alleles , Gene Expression Regulation, Plant , Hordeum , Plant Proteins , Polymorphism, Single Nucleotide , Stress, Physiological/genetics , Transcription Factors , Dehydration , Hordeum/genetics , Hordeum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers
6.
Front Plant Sci ; 12: 747886, 2021.
Article in English | MEDLINE | ID: mdl-35082803

ABSTRACT

The proposed method is a modified and improved version of the existing "Allele-specific q-PCR" (ASQ) method for genotyping of single nucleotide polymorphism (SNP) based on fluorescence resonance energy transfer (FRET). This method is similar to frequently used techniques like Amplifluor and Kompetitive allele specific PCR (KASP), as well as others employing common universal probes (UPs) for SNP analyses. In the proposed ASQ method, the fluorophores and quencher are located in separate complementary oligonucleotides. The ASQ method is based on the simultaneous presence in PCR of the following two components: an allele-specific mixture (allele-specific and common primers) and a template-independent detector mixture that contains two or more (up to four) universal probes (UP-1 to 4) and a single universal quencher oligonucleotide (Uni-Q). The SNP site is positioned preferably at a penultimate base in each allele-specific primer, which increases the reaction specificity and allele discrimination. The proposed ASQ method is advanced in providing a very clear and effective measurement of the fluorescence emitted, with very low signal background-noise, and simple procedures convenient for customized modifications and adjustments. Importantly, this ASQ method is estimated as two- to ten-fold cheaper than Amplifluor and KASP, and much cheaper than all those methods that rely on dual-labeled probes without universal components, like TaqMan and Molecular Beacons. Results for SNP genotyping in the barley genes HvSAP16 and HvSAP8, in which stress-associated proteins are controlled, are presented as proven and validated examples. This method is suitable for bi-allelic uniplex reactions but it can potentially be used for 3- or 4-allelic variants or different SNPs in a multiplex format in a range of applications including medical, forensic, or others involving SNP genotyping.

7.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167455

ABSTRACT

Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2ß). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.


Subject(s)
Gene Expression Regulation, Plant/genetics , Phosphoproteins/genetics , Transcription Factors/genetics , Triticum/genetics , Alleles , Droughts , Genes, Plant/genetics , Phosphoproteins/metabolism , Plant Breeding/methods , Plant Development/genetics , Polymorphism, Single Nucleotide/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Seeds , Stress, Physiological/genetics , Transcription Factors/metabolism , Triticum/metabolism
8.
BMC Plant Biol ; 20(Suppl 1): 156, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33050881

ABSTRACT

BACKGROUND: A family of genes designated as the Zinc finger A20/AN1 Transcription factors encoding stress-associated proteins (SAP) are well described in Arabidopsis and rice, and include 14 AtSAP and 18 OsSAP genes that are associated with variable tolerances to multiple abiotic stresses. The SAP gene family displays a great diversity in its structure and across different plant species. The aim of this study was to identify all HvSAP genes in barley (Hordeum vulgare L.), to analyse the expression of selected genes in response to salinity in barley leaves and develop SNP marker for HvSAP12 to evaluate the association between genotypes of barley plants and their grain yield in field trials. RESULTS: In our study, 17 HvSAP genes were identified in barley, which were strongly homologous to rice genes. Five genes, HvSAP5, HvSAP6, HvSAP11, HvSAP12 and HvSAP15, were found to be highly expressed in leaves of barley plants in response to salt stress in hydroponics compared to controls, using both semi-quantitative RT-PCR and qPCR analyses. The Amplifluor-like SNP marker KATU-B30 was developed and used for HvSAP12 genotyping. A strong association (R2 = 0.85) was found between KATU-B30 and grain yield production per plant of 50 F3 breeding lines originating from the cross Granal × Baisheshek in field trials with drought and low to moderate salinity in Northern and Central Kazakhstan. CONCLUSIONS: A group of HvSAP genes, and HvSAP12 in particular, play an important role in the tolerance of barley plants to salinity and drought, and is associated with higher grain yield in field trials. Marker-assisted selection with SNP marker KATU-B30 can be applied in barley breeding to improve grain yield production under conditions of abiotic stress.


Subject(s)
Hordeum/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Salt Stress/genetics , Zinc Fingers/genetics , Computational Biology , Genetic Markers , Kazakhstan , Oryza/genetics , Protein Domains , Real-Time Polymerase Chain Reaction , Species Specificity , Transcription Factors/genetics , Transcriptome
9.
BMC Plant Biol ; 20(Suppl 1): 183, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33050887

ABSTRACT

BACKGROUND: Chickpea is an important legume and is moderately tolerant to salinity stress during the growing season. However, the level and mechanisms for salinity tolerance can vary among accessions and cultivars. A large family of CaRab-GTP genes, previously identified in chickpea, is homologous to intracellular vesicle trafficking superfamily genes that play essential roles in response to salinity stress in plants. RESULTS: To determine which of the gene family members are involved in the chickpea salt response, plants from six selected chickpea accessions (Genesis 836, Hattrick, ICC12726, Rupali, Slasher and Yubileiny) were exposed to salinity stress and expression profiles resolved for the major CaRab-GTP gene clades after 5, 9 and 15 days of salt exposure. Gene clade expression profiles (using degenerate primers targeting all members of each clade) were tested for their relationship to salinity tolerance measures, namely plant biomass and Na+ accumulation. Transcripts representing 11 out of the 13 CaRab clades could be detected by RT-PCR, but only six (CaRabA2, -B, -C, -D, -E and -H) could be quantified using qRT-PCR due to low expression levels or poor amplification efficiency of the degenerate primers for clades containing several gene members. Expression profiles of three gene clades, CaRabB, -D and -E, were very similar across all six chickpea accessions, showing a strongly coordinated network. Salt-induced enhancement of CaRabA2 expression at 15 days showed a very strong positive correlation (R2 = 0.905) with Na+ accumulation in leaves. However, salinity tolerance estimated as relative plant biomass production compared to controls, did not correlate with Na+ accumulation in leaves, nor with expression profiles of any of the investigated CaRab-GTP genes. CONCLUSION: A coordinated network of CaRab-GTP genes, which are likely involved in intracellular trafficking, are important for the salinity stress response of chickpea plants.


Subject(s)
Cicer/genetics , Cicer/metabolism , Plant Leaves/metabolism , Sodium Chloride/pharmacology , Sodium/metabolism , rab GTP-Binding Proteins/metabolism , Cytoplasmic Vesicles/metabolism , Gene Expression Profiling , Genes, Plant , Potassium/metabolism , Salt Tolerance/genetics
10.
Int J Mol Sci ; 21(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481694

ABSTRACT

All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative electron transport components have been extensively studied in plants like Arabidopsis and stress inducible isoforms identified, but we know very little about them in the important crop plant chickpea. Here we identify AP components in chickpea (Cicer arietinum) and explore their response to stress at the transcript level. Based on sequence similarity with the functionally characterized proteins of Arabidopsis thaliana, five putative internal (matrix)-facing NAD(P)H dehydrogenases (CaNDA1-4 and CaNDC1) and four putative external (inter-membrane space)-facing NAD(P)H dehydrogenases (CaNDB1-4) were identified in chickpea. The corresponding activities were demonstrated for the first time in purified mitochondria of chickpea leaves and roots. Oxidation of matrix NADH generated from malate or glycine in the presence of the Complex I inhibitor rotenone was high compared to other plant species, as was oxidation of exogenous NAD(P)H. In leaf mitochondria, external NADH oxidation was stimulated by exogenous calcium and external NADPH oxidation was essentially calcium dependent. However, in roots these activities were low and largely calcium independent. A salinity experiment with six chickpea cultivars was used to identify salt-responsive alternative oxidase and NAD(P)H dehydrogenase gene transcripts in leaves from a three-point time series. An analysis of the Na:K ratio and Na content separated these cultivars into high and low Na accumulators. In the high Na accumulators, there was a significant up-regulation of CaAOX1, CaNDB2, CaNDB4, CaNDA3 and CaNDC1 in leaf tissue under long term stress, suggesting the formation of a stress-modified form of the mitochondrial electron transport chain (mETC) in leaves of these cultivars. In particular, stress-induced expression of the CaNDB2 gene showed a striking positive correlation with that of CaAOX1 across all genotypes and time points. The coordinated salinity-induced up-regulation of CaAOX1 and CaNDB2 suggests that the mitochondrial alternative pathway of respiration is an important facet of the stress response in chickpea, in high Na accumulators in particular, despite high capacities for both of these activities in leaf mitochondria of non-stressed chickpeas.


Subject(s)
Cicer/genetics , Cicer/physiology , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Salt Stress , Calcium/metabolism , Electron Transport , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , NADPH Dehydrogenase/metabolism , Oxygen/metabolism , Photosynthesis , Plant Roots/metabolism , Plant Shoots/metabolism , Sodium/chemistry , Species Specificity , Transcriptome
12.
New Phytol ; 225(3): 1072-1090, 2020 02.
Article in English | MEDLINE | ID: mdl-31004496

ABSTRACT

Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.


Subject(s)
Crops, Agricultural/physiology , Energy Metabolism , Salt Tolerance/physiology , Biological Transport , Cell Respiration , Plant Roots/anatomy & histology
13.
Plant Cell Environ ; 42(1): 71-84, 2019 01.
Article in English | MEDLINE | ID: mdl-29424926

ABSTRACT

Mitochondria isolated from chickpea (Cicer arietinum) possess substantial alternative oxidase (AOX) activity, even in non-stressed plants, and one or two AOX protein bands were detected immunologically, depending on the organ. Four different AOX isoforms were identified in the chickpea genome: CaAOX1 and CaAOX2A, B and D. CaAOX2A was the most highly expressed form and was strongly expressed in photosynthetic tissues, whereas CaAOX2D was found in all organs examined. These results are very similar to those of previous studies with soybean and siratro. Searches of available databases showed that this pattern of AOX genes and their expression was common to at least 16 different legume species. The evolution of the legume AOX gene family is discussed, as is the in vivo impact of an inherently high AOX capacity in legumes on growth and responses to environmental stresses.


Subject(s)
Cicer/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Mitochondrial Proteins/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Cicer/enzymology , Cicer/metabolism , Electrophoresis, Polyacrylamide Gel , Immunoblotting , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Oxygen Consumption , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
14.
Eur J Nutr ; 58(7): 2811-2821, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30284066

ABSTRACT

PURPOSE: Intestinal fermentation of inulin-type fructans, including oligofructose, can modulate adiposity, improve energy regulation, and increase mineral absorption. We aimed to determine whether cereal fructans had greater effects on reducing adiposity and improving mineral absorption compared with oligofructose. METHODS: Thirty-two male Sprague-Dawley rats were randomly assigned to one of four dietary treatments that contained 0% fructan (control), or 5% fructan provided by oligofructose (OF), a barley grain fraction (BGF), or a wheat stem fraction (WSF). After 1 week on the diets, mineral absorption and retention was assessed. At 4 weeks, blood samples were collected for gut hormone analysis, adipose depots were removed and weighed, and caecal digesta was analyzed for pH and short-chain fatty acids (SCFA). RESULTS: The BGF and WSF, but not OF, had lower total visceral fat weights than the Control (p < 0.05). The fructan diets all lowered caecal pH and raised caecal digesta weight and total SCFA content, in comparison to the Control. Caecal propionate levels for OF were similar to the Control and higher for WSF (p < 0.05). Plasma peptide YY and glucagon-like peptide-1 levels were elevated for all fructan groups when compared to Control (p < 0.001) and gastric inhibitory peptide was lower for the WSF compared to the other groups (p < 0.05). The fructan diets improved calcium and magnesium retention, which was highest for WSF (p < 0.05). BGF and WSF in comparison to OF showed differential effects on fermentation, gut hormone levels, and adiposity. CONCLUSIONS: Cereal fructan sources have favorable metabolic effects that suggest greater improvements in energy regulation and mineral status to those reported for oligofructose.


Subject(s)
Adiposity/drug effects , Edible Grain/metabolism , Fructans/metabolism , Fructans/pharmacology , Minerals/metabolism , Oligosaccharides/metabolism , Animals , Disease Models, Animal , Fermentation , Intestinal Mucosa , Intestines , Male , Oligosaccharides/pharmacology , Rats , Rats, Sprague-Dawley
16.
Int J Mol Sci ; 19(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558397

ABSTRACT

Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2.


Subject(s)
Hordeum/genetics , Mitochondrial Proteins/genetics , NADH Dehydrogenase/genetics , Oryza/genetics , Oxidative Stress , Oxidoreductases/genetics , Plant Proteins/genetics , Gene Expression Regulation, Plant , Hordeum/metabolism , Mitochondrial Proteins/metabolism , NADH Dehydrogenase/metabolism , Oryza/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism
17.
Nutr Res ; 32(8): 599-606, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22935343

ABSTRACT

The benefits of inulin-type fructans for bowel health are well established, but less so for other fructan sources. In vitro data suggest that fructans extracted from cereals are readily fermented and produce favorable short-chain fatty acid profiles; however, whether this occurs in vivo is unknown. We hypothesized that in rats, fructans extracted from wheat stem and barley grain would have similar effects on fermentation as oligofructose (OF). Fifty-six male Sprague-Dawley rats were randomly assigned to 1 of 7 dietary treatments that contained either 2% or 5% fructan, provided by a barley grain fructan extract (BGFE), a wheat stem fructan extract, or OF or no added fructan (control). The duration of the feeding study was 14 days. Rats fed diets containing 5% fructan had higher cecal digesta weights; larger acetate, propionate, and total short-chain fatty acid pools; and lower pHs in comparison with the control group. In addition, only the 5% OF and 5% BGFE groups increased cecal butyrate pools, and 5% BGFE was the only group in which colonic digesta pH was lower than that of the control. Diets containing 2% fructan did not affect any of these fermentation end points. Whereas bifidobacteria numbers in cecal digesta of 2% and 5% OF were higher than that in the control group, they were not different from those in rats fed diets containing BGFE and wheat stem fructan extract. Barley grain and wheat stem fructans produced similar large bowel fermentation patterns to OF when fed to rats at 5% of the diet.


Subject(s)
Diet , Fatty Acids, Volatile/metabolism , Fructans/pharmacology , Hordeum/chemistry , Intestine, Large/drug effects , Plant Extracts/pharmacology , Triticum/chemistry , Animals , Bifidobacterium , Butyric Acid/metabolism , Cecum/drug effects , Cecum/metabolism , Cecum/microbiology , Colon/chemistry , Colon/drug effects , Colon/metabolism , Fermentation , Hydrogen-Ion Concentration/drug effects , Intestine, Large/metabolism , Intestine, Large/microbiology , Male , Oligosaccharides/pharmacology , Organ Size/drug effects , Plant Stems , Random Allocation , Rats , Rats, Sprague-Dawley , Seeds
18.
J Exp Bot ; 62(14): 5217-31, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21813797

ABSTRACT

In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 'high amylose Glacier'. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis.


Subject(s)
Down-Regulation , Hordeum/enzymology , Plant Proteins/genetics , Starch Synthase/genetics , Amylose/biosynthesis , Gene Expression Regulation, Plant , Hordeum/genetics , Mutation , Phenotype , Plant Proteins/metabolism , Starch/biosynthesis , Starch Synthase/metabolism
19.
Plant Cell Environ ; 33(6): 926-42, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20199626

ABSTRACT

Reproductive stage water stress leads to spikelet sterility in wheat. Whereas drought stress at anthesis affects mainly grain size, stress at the young microspore stage of pollen development is characterized by abortion of pollen development and reduction in grain number. We identified genetic variability for drought tolerance at the reproductive stage. Drought-tolerant wheat germplasm is able to maintain carbohydrate accumulation in the reproductive organs throughout the stress treatment. Starch depletion in the ovary of drought-sensitive wheat is reversible upon re-watering and cross-pollination experiments indicate that the ovary is more resilient than the anther. The effect on anthers and pollen fertility is irreversible, suggesting that pollen sterility is the main cause of grain loss during drought conditions in wheat. The difference in storage carbohydrate accumulation in drought-sensitive and drought-tolerant wheat is correlated with differences in sugar profiles, cell wall invertase gene expression and expression of fructan biosynthesis genes in anther and ovary (sucrose : sucrose 1-fructosyl-transferase, 1-SST; sucrose : fructan 6-fructosyl-transferase, 6-SFT). Our results indicate that the ability to control and maintain sink strength and carbohydrate supply to anthers may be the key to maintaining pollen fertility and grain number in wheat and this mechanism may also provide protection against other abiotic stresses.


Subject(s)
Flowers/physiology , Seeds/growth & development , Triticum/physiology , Adaptation, Physiological , Biological Transport , Dehydration , Fructans/metabolism , Gene Expression Regulation, Plant , Organ Size , Pollination/physiology , Reproduction , Reverse Transcriptase Polymerase Chain Reaction , Starch/metabolism , Stress, Physiological , Sucrose/metabolism , Triticum/genetics , Triticum/growth & development
20.
Ann Bot ; 103(6): 859-68, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19190011

ABSTRACT

BACKGROUND AND AIMS: Carbohydrate temporarily accumulates in wheat stems during the early reproductive growth phase, predominantly as water soluble carbohydrate (WSC), and is subsequently remobilized during grain filling. Starch has also been reported as a minor storage carbohydrate component in wheat stems, but the details are lacking. METHODS: The accumulation and localization of starch in wheat stem and leaf sheath tissue over a developmental period from 6 d before anthesis to 35 d after anthesis was investigated. KEY RESULTS: The region of the peduncle enclosed by the flag-leaf sheath, and the penultimate internode were the main tissues identified as containing starch, in which the starch grains localized to the storage parenchyma cells. In contrast, the exposed peduncle lacked starch grains. Starch grains were also found in the flag-leaf and second-leaf sheath. Plants grown in low-nitrogen conditions exhibited increased storage of both starch and WSC compared with plants grown in high-nitrogen supply. CONCLUSIONS: The major accumulation and decrease of starch occurred temporally independently to that for WSC, suggesting a different functional role for starch in wheat stems. Starch reutilization concomitant with peduncle growth, and the early development of the reproductive structures, suggested a role in provision of energy and/or carbon scaffolds for these growth processes.


Subject(s)
Plant Stems/metabolism , Starch/metabolism , Triticum/metabolism , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...