Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37918918

ABSTRACT

BACKGROUND: Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing. METHODS: ID8 tumor cells were injected intraperitoneally into mice. Mice were treated with Th17-DC or conventional DC (cDC) vaccine alone or with immune checkpoint blockade (ICB). Systemic immunity, tumor associated immunity, tumor size and survival were examined using a variety of experimental strategies. RESULTS: Th17-DC vaccines increased Th17 T cells in the tumor microenvironment, reshaped the myeloid microenvironment, and improved mouse survival compared with cDC vaccines. ICB had limited efficacy in OC, but Th17-inducing DC vaccination sensitized it to anti-PD-1 ICB, resulting in durable progression-free survival by overcoming IL-10-mediated resistance. Th17-DC vaccine efficacy, alone or with ICB, was mediated by CD4 T cells, but not CD8 T cells. CONCLUSIONS: These findings emphasize using biologically relevant immune modifiers, like Th17-DC vaccines, in OC treatment to reshape the tumor microenvironment and enhance clinical responses to ICB therapy.


Subject(s)
CD4-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Mice , Animals , Immune Checkpoint Inhibitors , CD8-Positive T-Lymphocytes , Ovarian Neoplasms/therapy , Dendritic Cells , Tumor Microenvironment
3.
Immunity ; 51(3): 491-507.e7, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31533057

ABSTRACT

Tissue-resident memory CD8+ T (Trm) cells share core residency gene programs with tumor-infiltrating lymphocytes (TILs). However, the transcriptional, metabolic, and epigenetic regulation of Trm cell and TIL development and function is largely undefined. Here, we found that the transcription factor Bhlhe40 was specifically required for Trm cell and TIL development and polyfunctionality. Local PD-1 signaling inhibited TIL Bhlhe40 expression, and Bhlhe40 was critical for TIL reinvigoration following anti-PD-L1 blockade. Mechanistically, Bhlhe40 sustained Trm cell and TIL mitochondrial fitness and a functional epigenetic state. Building on these findings, we identified an epigenetic and metabolic regimen that promoted Trm cell and TIL gene signatures associated with tissue residency and polyfunctionality. This regimen empowered the anti-tumor activity of CD8+ T cells and possessed therapeutic potential even at an advanced tumor stage in mouse models. Our results provide mechanistic insights into the local regulation of Trm cell and TIL function.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Homeodomain Proteins/immunology , Mitochondria/immunology , Animals , Epigenesis, Genetic/immunology , Gene Expression Regulation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...