Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Musculoskelet Neuronal Interact ; 23(1): 26-35, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36856097

ABSTRACT

OBJECTIVES: This study examined effects of acute hypoxia on the neuromuscular responses (electromyographic (EMG) amplitude and EMG frequency) and localized muscle tissue oxygenated hemoglobin (oxygenated hemoglobin (OxyHb), deoxygenated hemoglobin (DeoxyHb), total hemoglobin (TotalHb), and muscle tissue oxygenation saturation (StO2) during the process of fatigue. METHODS: Fifteen male participants (21.4±2.8yr) performed leg extension repetitions to failure at 70% 1-repetition maximum until volitional exhaustion under Normoxic (FiO2:21%) and Hypoxic (FiO2:12.9%) conditions. Electromyographic amplitude, EMG frequency, OxyHb, DeoxyHb, TotalHb, and StO2 were measured from the vastus lateralis at Initial, 20, 40, 60, 80, and 100% of the repetitions to failure. RESULTS: There was no significant difference in the patterns of responses for EMG amplitude, OxyHb, or DeoxyHb between Normoxia and Hypoxia. For EMG frequency, Hypoxia was greater than Normoxia and decreased with fatigue. TotalHb and StO2 were greater under Normoxia compared to Hypoxia. The patterns of responses for EMG amplitude, DeoxyHb, and TotalHb increased throughout the repetitions to failure. OxyHb and StO2 exhibited decreases throughout the repetitions to failure for Normoxic and Hypoxic conditions. CONCLUSION: The EMG and oxygenation measurements non-invasively suggest a sympathoexcitatory response (indicated by EMG frequency) and provided complimentary information regarding the process of fatigue in normoxic and hypoxic states.


Subject(s)
Exercise , Hypoxia , Muscle Fatigue , Humans , Male , Hemodynamics , Hemoglobins , Quadriceps Muscle/physiology , Young Adult , Exercise/physiology
2.
Mil Med ; 188(3-4): e753-e760, 2023 03 20.
Article in English | MEDLINE | ID: mdl-35072728

ABSTRACT

INTRODUCTION: The newly implemented Army Combat Fitness Test (ACFT) of the U.S. Army seeks to revolutionize the Army's fitness culture and reduce the rate of preventable injuries among soldiers. The initial rollout of the ACFT has been met with several challenges, including a gender-neutral scoring system. The ACFT has undergone several revisions to adapt to the present state of U.S. Army physical fitness; however, the test faces several more obstacles as more data become available. The ACFT was designed to measure combat readiness, a useful tool for units facing deployment or a change in duty station to a high-altitude environment. Reduced oxygen availability (hypoxia) at high altitude influences many physiological functions associated with physical fitness, such that there is an increased demand for oxygen in exercising muscle. Therefore, the purpose was to investigate the effects of normoxic and two levels of hypoxia exposure (moderate and severe; fraction of inspired oxygen [FiO2]: 16.0% and 14.3%) during the 3-repetition deadlift (MDL), hand-release push-up (HRP), and leg tuck (LTK) events of the ACFT. MATERIALS AND METHODS: Fourteen recreationally active men (n = 10) and women (n = 4) soldier analogs (27.36 ± 1.12 years, height 1.71 ± 2.79 m, weight 80.60 ± 4.24 kg) completed the MDL, HRP, and LTK at normoxia and acute normobaric moderate (MH; FiO2 16%) and severe (SH; FiO2 14.3%) hypoxic exposure. Scores and performance were recorded for each event, and heart rate (HR) and total body oxygen saturation (SpO2) were monitored throughout. Repeated-measures analysis of variance (ANOVA) was used to assess differences in modified ACFT scores, performance, HR, and SpO2 among hypoxic conditions, with follow-up one-way ANOVA and paired t-test when appropriate. RESULTS: Total body oxygen saturation was decreased at MH and SH conditions compared to normoxia but did not vary between ACFT events. Heart rate was not influenced by altitude but did increase in response to exercise. Scores of the modified total and individual ACFT events were not different between normoxia, MH, and SH. There was also no difference in performance based on the amount of weight lifted during the MDL and number of repetitions of the HRP and LTK events in response to hypoxic exposure. CONCLUSIONS: Performance and scores of the modified ACFT were not influenced by acute normobaric MH and SH exposure compared to normoxia. Further investigations should examine the full testing battery of the ACFT to provide a comprehensive analysis and potential evidence for such differences.


Subject(s)
Leg , Military Personnel , Male , Humans , Female , Hypoxia , Oxygen , Exercise
3.
Int J Exerc Sci ; 15(5): 1481-1491, 2022.
Article in English | MEDLINE | ID: mdl-36619830

ABSTRACT

To investigate the effects of two levels of acute hypoxic exposure and exercise compared to normoxia on the Stroop color word test. A total of 14 (4 females and 10 males) active participants with a self-reported (mean±SEM) 8.54±1.44 h/week of physical activity, performed a 3-repetition maximum hex/trap bar deadlift, Hand-Release Push-Up, and Leg Tuck events from the Army Combat Fitness Test at normoxia and normobaric hypoxia of fraction of inspired oxygen (FiO2) of 16% and 14.3%. The Stroop color-word test was administered on a touch screen device before and after the exercise battery, where participants were given congruent (word and ink color matching) and incongruent (non-matching) prompts. Peripheral oxygen saturation (SpO2) and heart rate were recorded at pre- and post-exercise. Variables obtained from the Stroop color word test were not influenced as a result of acute hypoxic exposure but did improve after an exercise battery. Peripheral oxygen saturation was greater during normoxia compared to acute hypoxic exposure which indicated a systemic change in oxygenation. The results of the present study indicated that the Stroop color-word test is not influenced by an FiO2 16% or 14.3%, however, exercise did improve Stroop score and response time.

4.
Curr Res Physiol ; 4: 209-215, 2021.
Article in English | MEDLINE | ID: mdl-34746840

ABSTRACT

PURPOSE: The present study examined acute normobaric hypoxic exposure on the number of repetitions to failure, electromyographic (EMG) repetition duration (Time), EMG root mean square (RMS) and EMG mean power frequency (MPF) during biceps brachii (BB) dynamic constant external resistance (DCER) exercise. METHODS: Thirteen subjects performed two sets of fatiguing DCER arm curl repetitions to failure at 70% of their one repetition maximum under normoxic (NH), moderate hypoxia FiO2 = 15% (MH) and severe hypoxia FiO2 = 13% (SH). Electromyography of the BB was analyzed for EMG Time, EMG RMS, and EMG MPF. Repetitions were selected as 25%, 50%, 75%, and 100% of total repetitions (%Fail) completed. Pulse oximetry (SpO2) was measured pre-and post-fatigue. RESULTS: There was no significant three-way (Condition x Set x %Fail) or two-way (Condition x Set) interaction for any variable. The number of repetitions to failure significantly decreased from (mean ± SEM) 18.2 ± 1.4 to 9.5 ± 1.0 with each Set. In addition, EMG Time increased (25% < 50%<75% < 100%), EMG RMS decreased (50% > 75%>100%), and EMG MPF decreased (75% > 100%) as a result of fatiguing exercise. SpO2 was lower during MH (Δ5.3%) and SH (Δ9.2%) compared to NH and as a result of fatiguing exercise increased only in MH (Δ2.1%) and SH (Δ5.7%). CONCLUSION: The changes in BB EMG variables indicated exercise caused myoelectric manifestations of fatigue, however, acute moderate or severe hypoxia had no additional influence on the rate of fatigue development or neuromuscular parameters.

5.
Curr Res Physiol ; 4: 243-251, 2021.
Article in English | MEDLINE | ID: mdl-34806034

ABSTRACT

PURPOSE: The purpose of this study is to examine the effects of fatigue on muscular performance, oxygenation saturation, and cognition following acute hypoxic exposure at Normoxia, Moderate Hypoxia (MH), and Severe Hypoxia (SH). METHODS: Twelve males performed 3 sets of leg extensions to failure under Normoxia (FiO2: 21%), MH (Fi02: 15.4%), and SH (Fi02: 12.9%). Heart rate, peripheral oxygenation saturation, total saturation index, psychomotor vigilance testing reaction time, psychomotor vigilance error rate, maximum strength, and repetitions to failure were measured throughout each visit. RESULTS: The primary findings indicated that MH and SH resulted in significant decreases in psychomotor vigilance test performance (MH: 388.25-427.17 ms, 0.41-0.33 error rate; SH: 398.17-445.42 ms reaction time, 0.25-1.00 error rate), absolute muscle tissue oxygen saturation (Abs-StO2) (MH:67.22% compared to SH:57.56%), but similar muscular strength, heart rate, and patterns of muscle tissue oxygen saturation responses (StO2%) during fatigue when compared to Normoxia. There was an acute decrease in the ability to remain vigilant and/or respond correctly to visual stimuli as indicated by the worsened reaction time (PVTRT) during MH (FiO2: 15.4%) and increased PVTRT and error rate (PVTE) during SH (FiO2: 12.9%) conditions. CONCLUSIONS: Acute hypoxic exposure in the current study was not a sufficient stimuli to elicit hypoxic-related changes in HR, muscular strength (1-RM), or repetitions to failure. The SpO2 responses were hypoxic-level dependent with increasing levels of hypoxia resulting in greater and more sustained reductions in SpO2. The combined SpO2 and StO2 responses at MH and SH suggested a balance between the muscles metabolic demand remaining lower than the muscle oxygen diffusion capacity. During the SH condition, Abs-StO2 suggested greater metabolic stress than Normoxia and MH conditions during the fatiguing leg extensions. The patterns of responses for StO2% during the three sets of leg press to failure indicated that exercise is a more potent influencer to muscle oxygenation status than hypoxic conditions (FiO2: 15.4 and 12.9%).

SELECTION OF CITATIONS
SEARCH DETAIL