Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746453

ABSTRACT

The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.

2.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141762

ABSTRACT

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Subject(s)
GTPase-Activating Proteins , Mitochondria , Protein Interaction Maps , Protozoan Proteins , Toxoplasma , Humans , Binding Sites , Calorimetry , Chromatography, Gel , Fibroblasts/metabolism , Fibroblasts/parasitology , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Hydrogen Deuterium Exchange-Mass Spectrometry , Mitochondria/metabolism , Mitochondria/parasitology , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/chemistry , Toxoplasma/genetics , Toxoplasma/metabolism , Two-Hybrid System Techniques
3.
Elife ; 122023 Jul 07.
Article in English | MEDLINE | ID: mdl-37417733

ABSTRACT

PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCß activated by the IgE receptor, and Gßγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here, using a combination of cryo electron microscopy, HDX-MS, and biochemical assays, we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gßγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCß helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCß phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCß-mediated phosphorylation. Overall, this work shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.


Subject(s)
Lipid Metabolism , Signal Transduction , Allosteric Regulation , Signal Transduction/physiology , Phosphorylation , Cell Membrane
4.
Nat Commun ; 14(1): 3204, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268630

ABSTRACT

Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.


Subject(s)
Diglycerides , Perilipin-3 , Diglycerides/metabolism , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Perilipin-1/metabolism , Perilipin-3/metabolism , Triglycerides/metabolism
5.
bioRxiv ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37090531

ABSTRACT

PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCß activated by the IgE receptor, and Gßγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here using a combination of cryo electron microscopy, HDX-MS, and biochemical assays we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gßγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCß helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCß phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCß mediated phosphorylation. Overall, this works shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.

6.
Structure ; 31(3): 343-354.e3, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36758543

ABSTRACT

Akt is a master regulator of pro-growth signaling in the cell. Akt is activated by phosphoinositides that disrupt the autoinhibitory interface between the kinase and pleckstrin homology (PH) domains and then is phosphorylated at T308 and S473. Akt hyperactivation is oncogenic, which has spurred development of potent and selective inhibitors as therapeutics. Using hydrogen deuterium exchange mass spectrometry (HDX-MS), we interrogated the conformational changes upon binding Akt ATP-competitive and allosteric inhibitors. We compared inhibitors against three different states of Akt1. The allosteric inhibitor caused substantive conformational changes and restricts membrane binding. ATP-competitive inhibitors caused extensive allosteric conformational changes, altering the autoinhibitory interface and leading to increased membrane binding, suggesting that the PH domain is more accessible for membrane binding. This work provides unique insight into the autoinhibitory conformation of the PH and kinase domain and conformational changes induced by Akt inhibitors and has important implications for the design of Akt targeted therapeutics.


Subject(s)
Proto-Oncogene Proteins c-akt , Signal Transduction , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Allosteric Regulation , Protein Kinase Inhibitors/chemistry , Adenosine Triphosphate/metabolism
7.
Cell Rep ; 42(3): 112172, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36842083

ABSTRACT

Class IB phosphoinositide 3-kinase (PI3Kγ) is activated in immune cells and can form two distinct complexes (p110γ-p84 and p110γ-p101), which are differentially activated by G protein-coupled receptors (GPCRs) and Ras. Using a combination of X-ray crystallography, hydrogen deuterium exchange mass spectrometry (HDX-MS), electron microscopy, molecular modeling, single-molecule imaging, and activity assays, we identify molecular differences between p110γ-p84 and p110γ-p101 that explain their differential membrane recruitment and activation by Ras and GPCRs. The p110γ-p84 complex is dynamic compared with p110γ-p101. While p110γ-p101 is robustly recruited by Gßγ subunits, p110γ-p84 is weakly recruited to membranes by Gßγ subunits alone and requires recruitment by Ras to allow for Gßγ activation. We mapped two distinct Gßγ interfaces on p101 and the p110γ helical domain, with differences in the C-terminal domain of p84 and p101 conferring sensitivity of p110γ-p101 to Gßγ activation. Overall, our work provides key insight into the molecular basis for how PI3Kγ complexes are activated.


Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , Signal Transduction/physiology , Phosphatidylinositol 3-Kinases/metabolism , Receptors, G-Protein-Coupled , Models, Molecular , Phosphatidylinositol 3-Kinase
8.
Nat Commun ; 14(1): 181, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635288

ABSTRACT

PIK3CA encoding the phosphoinositide 3-kinase (PI3K) p110α catalytic subunit is frequently mutated in cancer, with mutations occurring widely throughout the primary sequence. The full set of mechanisms underlying how PI3Ks are activated by all oncogenic mutations on membranes are unclear. Using a synergy of biochemical assays and hydrogen deuterium exchange mass spectrometry (HDX-MS), we reveal unique regulatory mechanisms underlying PI3K activation. Engagement of p110α on membranes leads to disengagement of the ABD of p110α from the catalytic core, and the C2 domain from the iSH2 domain of the p85 regulatory subunit. PI3K activation also requires reorientation of the p110α C-terminus, with mutations that alter the inhibited conformation of the C-terminus increasing membrane binding. Mutations at the C-terminus (M1043I/L, H1047R, G1049R, and N1068KLKR) activate p110α through distinct mechanisms, with this having important implications for mutant selective inhibitor development. This work reveals unique mechanisms underlying how PI3K is activated by oncogenic mutations, and explains how double mutants can synergistically increase PI3K activity.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Neoplasms , Humans , Catalytic Domain/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Mutation , Neoplasms/genetics
9.
J Biol Chem ; 299(1): 102764, 2023 01.
Article in English | MEDLINE | ID: mdl-36463963

ABSTRACT

The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.


Subject(s)
GTP Phosphohydrolases , I-kappa B Kinase , Models, Molecular , rab GTP-Binding Proteins , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , I-kappa B Kinase/metabolism , Protein Binding , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism , Mass Spectrometry
10.
Biochem Soc Trans ; 50(6): 1607-1617, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36454645

ABSTRACT

A large amount of the human proteome is composed of highly dynamic regions that do not adopt a single static conformation. These regions are defined as intrinsically disordered, and they are found in a third of all eukaryotic proteins. They play instrumental roles in many aspects of protein signaling, but can be challenging to characterize by biophysical methods. Intriguingly, many of these regions can adopt stable secondary structure upon interaction with a variety of binding partners, including proteins, lipids, and ligands. This review will discuss the application of Hydrogen-deuterium exchange mass spectrometry (HDX-MS) as a powerful biophysical tool that is particularly well suited for structural and functional characterization of intrinsically disordered regions in proteins. A focus will be on the theory of hydrogen exchange, and its practical application to identify disordered regions, as well as characterize how they participate in protein-protein and protein-membrane interfaces. A particular emphasis will be on how HDX-MS data can be presented specifically tailored for analysis of intrinsically disordered regions, as well as the technical aspects that are critical to consider when designing HDX-MS experiments for proteins containing intrinsically disordered regions.


Subject(s)
Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry , Humans , Deuterium Exchange Measurement/methods , Protein Conformation , Mass Spectrometry/methods , Proteins/chemistry , Hydrogen/chemistry
11.
Elife ; 112022 06 16.
Article in English | MEDLINE | ID: mdl-35708309

ABSTRACT

Numerous receptor tyrosine kinases and immune receptors activate phospholipase C-γ (PLC-γ) isozymes at membranes to control diverse cellular processes including phagocytosis, migration, proliferation, and differentiation. The molecular details of this process are not well understood. Using hydrogen-deuterium exchange mass spectrometry, we show that PLC-γ1 is relatively inert to lipid vesicles that contain its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2), unless first bound to the kinase domain of the fibroblast growth factor receptor (FGFR1). Exchange occurs throughout PLC-γ1 and is exaggerated in PLC-γ1 containing an oncogenic substitution (D1165H) that allosterically activates the lipase. These data support a model whereby initial complex formation shifts the conformational equilibrium of PLC-γ1 to favor activation. This receptor-induced priming of PLC-γ1 also explains the capacity of a kinase-inactive fragment of FGFR1 to modestly enhance the lipase activity of PLC-γ1 operating on lipid vesicles but not a soluble analog of PIP2 and highlights potential cooperativity between receptor engagement and membrane proximity. Priming is expected to be greatly enhanced for receptors embedded in membranes and nearly universal for the myriad of receptors and co-receptors that bind the PLC-γ isozymes.


Subject(s)
Isoenzymes , Type C Phospholipases , Allosteric Regulation , Enzyme Activation , Isoenzymes/metabolism , Lipase/metabolism , Lipids , Phospholipase C gamma/metabolism , Phosphorylation , Type C Phospholipases/metabolism
12.
Cardiol Young ; 32(2): 230-235, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33966676

ABSTRACT

Patients with single-ventricle CHD undergo a series of palliative surgeries that culminate in the Fontan procedure. While the Fontan procedure allows most patients to survive to adulthood, the Fontan circulation can eventually lead to multiple cardiac complications and multi-organ dysfunction. Care for adolescents and adults with a Fontan circulation has begun to transition from a primarily cardiac-focused model to care models, which are designed to monitor multiple organ systems, and using clues from this screening, identify patients who are at risk for adverse outcomes. The complexity of care required for these patients led our centre to develop a multidisciplinary Fontan Management Programme with the primary goals of earlier detection and treatment of complications through the development of a cohesive network of diverse medical subspecialists with Fontan expertise.


Subject(s)
Fontan Procedure , Heart Defects, Congenital , Univentricular Heart , Adolescent , Adult , Fontan Procedure/adverse effects , Heart Defects, Congenital/surgery , Humans , Palliative Care
13.
Nat Commun ; 12(1): 6064, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663815

ABSTRACT

Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAß1. We show that unlike canonical cytosolic calcineurin, CNAß1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAß1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAß1.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Cell Membrane/metabolism , Lipoylation/physiology , Phosphoric Monoester Hydrolases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Calcineurin/metabolism , Cell Line , Cytoplasm/metabolism , Golgi Apparatus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Isoforms/metabolism , Signal Transduction/physiology
14.
J Mol Biol ; 433(18): 167145, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34229011

ABSTRACT

Transport Protein Particle complexes (TRAPP) are evolutionarily conserved regulators of membrane trafficking, with this mediated by their guanine nucleotide exchange factor (GEF) activity towards Rab GTPases. In metazoans evidence suggests that two different TRAPP complexes exist, TRAPPII and TRAPPIII. These two complexes share a common core of subunits, with complex specific subunits (TRAPPC9 and TRAPPC10 in TRAPPII and TRAPPC8, TRAPPC11, TRAPPC12, TRAPPC13 in TRAPPIII). TRAPPII and TRAPPIII have distinct specificity for GEF activity towards Rabs, with TRAPPIII acting on Rab1, and TRAPPII acting on Rab1 and Rab11. The molecular basis for how these complex specific subunits alter GEF activity towards Rab GTPases is unknown. Here we have used a combination of biochemical assays, hydrogen deuterium exchange mass spectrometry (HDX-MS) and electron microscopy to examine the regulation of TRAPPII and TRAPPIIII complexes in solution and on membranes. GEF assays revealed that TRAPPIII has GEF activity against Rab1 and Rab43, with no detectable activity against the other 18 Rabs tested. The TRAPPIII complex had significant differences in protein dynamics at the Rab binding site compared to TRAPPII, potentially indicating an important role of accessory subunits in altering the active site of TRAPP complexes. Both the TRAPPII and TRAPPIII complexes had enhanced GEF activity on lipid membranes, with HDX-MS revealing numerous conformational changes that accompany membrane association. HDX-MS also identified a membrane binding site in TRAPPC8. Collectively, our results provide insight into the functions of TRAPP complexes and how they can achieve Rab specificity.


Subject(s)
Cell Membrane/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Mammals/metabolism , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Binding Sites , Guanine Nucleotide Exchange Factors/genetics , Humans , Mammals/genetics , Protein Conformation , Protein Transport , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics
15.
Psychiatr Q ; 92(3): 851-862, 2021 09.
Article in English | MEDLINE | ID: mdl-33219428

ABSTRACT

Timely use of pharmacological interventions to treat acute agitation has the potential to decrease physical restraint use. The aim of this study is to determine if adherence to standardized pharmacological recommendations for the treatment of acutely agitated pediatric patients decreases physical restraint use. Additionally, this study aims to identify predictors of physical restraint use and describe treatment related adverse events. This is a retrospective chart review of patient visits between September 1, 2016 and August 31, 2017. Patient visits were included if the patient presented to the pediatric emergency department, met ICD-10 codes, and received pharmacologic management or physical restraint to treat acute agitation. The differences in rate of physical restraint was assessed between patients treated according to the standardized pharmacological recommendations and patients who were not. 447 patients were included with a mean age of 13 years. No significant difference in physical restraint use was found when standardized pharmacological recommendations were followed compared to when they were not (P = 0.16). Only presentation on day shift when compared to evening shift resulted in increased odds of being restrained (OR 2.03; 95% CI 1.18, 3.50). Nine adverse events possibly related to medications were identified with none considered to be of significant clinical concern. Standardized pharmacological treatment recommendations was not associated with a decrease in physical restraint use for agitated patients presenting to the pediatric emergency department. The pharmacologic strategies utilized were generally safe and well tolerated in this patient population.


Subject(s)
Psychomotor Agitation , Restraint, Physical , Adolescent , Algorithms , Child , Emergency Service, Hospital , Humans , Psychomotor Agitation/drug therapy , Retrospective Studies
16.
Commun Biol ; 3(1): 735, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277614

ABSTRACT

The TRAnsport Protein Particle (TRAPP) complexes act as Guanine nucleotide exchange factors (GEFs) for Rab GTPases, which are master regulators of membrane trafficking in eukaryotic cells. In metazoans, there are two large multi-protein TRAPP complexes: TRAPPII and TRAPPIII, with the TRAPPII complex able to activate both Rab1 and Rab11. Here we present detailed biochemical characterisation of Rab-GEF specificity of the human TRAPPII complex, and molecular insight into Rab binding. GEF assays of the TRAPPII complex against a panel of 20 different Rab GTPases revealed GEF activity on Rab43 and Rab19. Electron microscopy and chemical cross-linking revealed the architecture of mammalian TRAPPII. Hydrogen deuterium exchange MS showed that Rab1, Rab11 and Rab43 share a conserved binding interface. Clinical mutations in Rab11, and phosphomimics of Rab43, showed decreased TRAPPII GEF mediated exchange. Finally, we designed a Rab11 mutation that maintained TRAPPII-mediated GEF activity while decreasing activity of the Rab11-GEF SH3BP5, providing a tool to dissect Rab11 signalling. Overall, our results provide insight into the GTPase specificity of TRAPPII, and how clinical mutations disrupt this regulation.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Cell Line , Chromatography, Liquid , Humans , Insecta , Models, Molecular , Protein Conformation , Protein Isoforms , Substrate Specificity , Tandem Mass Spectrometry , rab GTP-Binding Proteins/genetics
17.
J Am Soc Mass Spectrom ; 31(10): 2202-2209, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32869988

ABSTRACT

Filtering of nonspecifically binding contaminant proteins from affinity purification mass spectrometry (AP-MS) data is a well-established strategy to improve statistical confidence in identified proteins. The CRAPome (contaminant repository for affinity purification) describes the contaminating background content present in many purification strategies. However, full contaminant lists for nickel-nitrilotriacetic acid (NiNTA) and glutathione S-transferase (GST) affinity matrices are lacking. Similarly, no Spodoptera frugiperda (Sf9) contaminants are available, and only the FLAG-purified contaminants are described for Escherichia coli. For MS experiments that use recombinant protein, such as structural mass spectrometry experiments (hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking, and radical foot-printing), failing to include these contaminants in the search database during the initial tandem MS (MS/MS) identification stage can result in complications in peptide identification. We have created contaminant FASTA databases for Sf9 and E. coli NiNTA or GST purification strategies and show that the use of these databases can effectively improve HDX-MS protein coverage, fragment count, and confidence in peptide identification. This approach provides a robust strategy toward the design of contaminant databases for any purification approach that will expand the complexity of systems able to be interrogated by HDX-MS.


Subject(s)
Escherichia coli Proteins/analysis , Escherichia coli/chemistry , Insect Proteins/analysis , Peptides/analysis , Spodoptera/chemistry , Tandem Mass Spectrometry/methods , Animals , Databases, Protein , Deuterium Exchange Measurement/methods , Glutathione Transferase/analysis
18.
Structure ; 28(7): 810-819.e5, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32402248

ABSTRACT

Phospholipase C (PLC) enzymes hydrolyze phosphoinositide lipids to inositol phosphates and diacylglycerol. Direct activation of PLCß by Gαq and/or Gßγ subunits mediates signaling by Gq and some Gi coupled G-protein-coupled receptors (GPCRs), respectively. PLCß isoforms contain a unique C-terminal extension, consisting of proximal and distal C-terminal domains (CTDs) separated by a flexible linker. The structure of PLCß3 bound to Gαq is known, however, for both Gαq and Gßγ; the mechanism for PLCß activation on membranes is unknown. We examined PLCß2 dynamics on membranes using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Gßγ caused a robust increase in dynamics of the distal C-terminal domain (CTD). Gαq showed decreased deuterium incorporation at the Gαq binding site on PLCß. In vitro Gßγ-dependent activation of PLC is inhibited by the distal CTD. The results suggest that disruption of autoinhibitory interactions with the CTD leads to increased PLCß hydrolase activity.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein gamma Subunits/chemistry , Phospholipase C beta/chemistry , Allosteric Regulation , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Phospholipase C beta/metabolism , Protein Binding , Sf9 Cells , Spodoptera
19.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31829496

ABSTRACT

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Subject(s)
Enterovirus , Animals , Enterovirus/genetics , Enterovirus/metabolism , Golgi Apparatus/metabolism , Phosphatidylinositol Phosphates , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , Sf9 Cells , Virus Replication
20.
Pediatr Blood Cancer ; 66(6): e27719, 2019 06.
Article in English | MEDLINE | ID: mdl-30900794

ABSTRACT

Asparaginase therapy induces a transient antithrombin III (ATIII) deficiency, which contributes to the risk of asparaginase-induced thrombosis. At Cincinnati Children's Hospital Medical Center, management of asparaginase-induced thrombosis includes ATIII supplementation during therapeutic anticoagulation with enoxaparin. Due to the expense associated with ATIII, a capped dosing approach for ATIII was evaluated in this population. Peak ATIII levels were obtained following capped doses to evaluate response. In this pilot evaluation, 11 patients received a total of 138 capped doses for a total cost savings of $803 782. This pilot evaluation represents the first reported analysis of capped ATIII dosing in oncology patients.


Subject(s)
Antithrombin III Deficiency/drug therapy , Antithrombin III Deficiency/economics , Antithrombin III/economics , Asparaginase/adverse effects , Cost-Benefit Analysis , Enoxaparin/economics , Thrombosis/drug therapy , Adolescent , Adult , Anticoagulants/administration & dosage , Anticoagulants/economics , Antithrombin III/administration & dosage , Antithrombin III/metabolism , Antithrombin III Deficiency/chemically induced , Child , Drug Therapy, Combination , Enoxaparin/administration & dosage , Female , Follow-Up Studies , Humans , Male , Pilot Projects , Prognosis , Retrospective Studies , Thrombosis/enzymology , Thrombosis/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...