Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Res Commun ; 4(4): 1100-1110, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38551394

ABSTRACT

PURPOSE: TPST-1120 is a first-in-class oral inhibitor of peroxisome proliferator-activated receptor α (PPARα), a fatty acid ligand-activated transcription factor that regulates genes involved in fatty acid oxidation, angiogenesis, and inflammation, and is a novel target for cancer therapy. TPST-1120 displayed antitumor activity in xenograft models and synergistic tumor reduction in syngeneic tumor models when combined with anti-PD-1 agents. EXPERIMENTAL DESIGN: This phase I, open-label, dose-escalation study (NCT03829436) evaluated TPST-1120 as monotherapy in patients with advanced solid tumors and in combination with nivolumab in patients with renal cell carcinoma (RCC), cholangiocarcinoma (CCA), or hepatocellular carcinoma. Objectives included evaluation of safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity (RECIST v1.1). RESULTS: A total of 39 patients enrolled with 38 treated (20 monotherapy, 18 combination; median 3 prior lines of therapy). The most common treatment-related adverse events (TRAE) were grade 1-2 nausea, fatigue, and diarrhea. No grade 4-5 TRAEs or dose-limiting toxicities were reported. In the monotherapy group, 53% (10/19) of evaluable patients had a best objective response of stable disease. In the combination group, 3 patients had partial responses, for an objective response rate of 20% (3/15) across all doses and 30% (3/10) at TPST-1120 ≥400 mg twice daily. Responses occurred in 2 patients with RCC, both of whom had previously progressed on anti-PD-1 therapy, and 1 patient with late-line CCA. CONCLUSIONS: TPST-1120 was well tolerated as monotherapy and in combination with nivolumab and the combination showed preliminary evidence of clinical activity in PD-1 inhibitor refractory and immune compromised cancers. SIGNIFICANCE: TPST-1120 is a first-in-class oral inhibitor of PPARα, whose roles in metabolic and immune regulation are implicated in tumor proliferation/survival and inhibition of anticancer immunity. This first-in-human study of TPST-1120 alone and in combination with nivolumab supports proof-of-concept of PPARα inhibition as a target of therapeutic intervention in solid tumors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Liver Neoplasms , PPAR alpha , Humans , Carcinoma, Renal Cell/drug therapy , Fatty Acids , Kidney Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Nivolumab/therapeutic use , PPAR alpha/antagonists & inhibitors
2.
J Med Chem ; 66(24): 17086-17104, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38079537

ABSTRACT

A set of focused analogues have been generated around a lead indirect adenosine monophosphate-activated kinase (AMPK) activator to improve the rat clearance of the molecule. Analogues were focused on inhibiting amide hydrolysis by the strategic placement of substituents that increased the steric environment about the secondary amide bond between 4-aminopiperidine and pyridine-5-carboxylic acid. It was found that placing substituents at position 3 of the piperidine ring and position 4 of the pyridine could all improve clearance without significantly impacting on-target potency. Notably, trans-3-fluoropiperidine 32 reduced rat clearance from above liver blood flow to 19 mL/min/kg and improved the hERG profile by attenuating the basicity of the piperidine moiety. Oral dosing of 32 activated AMPK in mouse liver and after 2 weeks of dosing improved glucose handling in a db/db mouse model of Type II diabetes as well as lowering fasted glucose and insulin levels.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Rats , Animals , AMP-Activated Protein Kinases , Diamide , Glucose , Pyridines/pharmacology , Piperidines , Amides
3.
Bioorg Med Chem ; 71: 116951, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35973281

ABSTRACT

Using an in-cell AMPK activation assay, we have developed structure-activity relationships around a hit pyridine dicarboxamide 5 that resulted in 40 (R419). A particular focus was to retain the on-target potency while also improving microsomal stability and reducing off-target activities, including hERG inhibition. We were able to show that removing a tertiary amino group from the piperazine unit of hit compound 5 improved microsomal stability while hERG inhibition was improved by modifying the substitution of the central core pyridine ring. The SAR resulted in 40, which continues to maintain on-target potency. Compound 40 was able to activate AMPK in vivo after oral administration and showed efficacy in animal models investigating activation of AMPK as a therapy for glucose control (both db/db and DIO mouse models).


Subject(s)
AMP-Activated Protein Kinases , Hypoglycemic Agents , AMP-Activated Protein Kinases/metabolism , Animals , Enzyme Activation , Hypoglycemic Agents/pharmacology , Mice , Pyridines , Structure-Activity Relationship
4.
Clin Cancer Res ; 28(8): 1540-1548, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35140121

ABSTRACT

PURPOSE: Dual inhibition of glucose and glutamine metabolism results in synergistic anticancer effects in solid tumor models. Telaglenastat, an investigational, small-molecule, glutaminase inhibitor, exhibits modest single-agent activity in renal cell carcinoma (RCC) patients. This phase Ib trial evaluated telaglenastat plus cabozantinib or everolimus, agents known to impair glucose metabolism in patients with metastatic RCC (mRCC). PATIENTS AND METHODS: mRCC patients received escalating doses of telaglenastat [400-800 mg per os (p.o.) twice daily] in a 3 + 3 design, plus either everolimus (10 mg daily p.o.; TelaE) or cabozantinib (60 mg daily p.o.; TelaC). Tumor response (RECISTv1.1) was assessed every 8 weeks. Endpoints included safety (primary) and antitumor activity. RESULTS: Twenty-seven patients received TelaE, 13 received TelaC, with median 2 and 3 prior therapies, respectively. Treatment-related adverse events were mostly grades 1 to 2, most common including decreased appetite, anemia, elevated transaminases, and diarrhea with TelaE, and diarrhea, decreased appetite, elevated transaminases, and fatigue with TelaC. One dose-limiting toxicity occurred per cohort: grade 3 pruritic rash with TelaE and thrombocytopenia with TelaC. No maximum tolerated dose (MTD) was reached for either combination, leading to a recommended phase II dose of 800-mg telaglenastat twice daily with standard doses of E or C. TelaE disease control rate (DCR; response rate + stable disease) was 95.2% [20/21, including 1 partial response (PR)] among 21 patients with clear cell histology and 66.7% (2/3) for papillary. TelaC DCR was 100% (12/12) for both histologies [5/10 PRs as best response (3 confirmed) in clear cell]. CONCLUSIONS: TelaE and TelaC showed encouraging clinical activity and tolerability in heavily pretreated mRCC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Anilides , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Diarrhea/drug therapy , Enzyme Inhibitors/therapeutic use , Everolimus , Female , Humans , Kidney Neoplasms/pathology , Male , Pyridines , Transaminases
5.
Mol Metab ; 4(9): 643-51, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26413470

ABSTRACT

OBJECTIVE: Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. METHODS: Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK ß1ß2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. RESULTS: There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. CONCLUSIONS: Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity.

6.
BMC Res Notes ; 7: 674, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25252968

ABSTRACT

BACKGROUND: The novel small molecule R118 and the biguanide metformin, a first-line therapy for type 2 diabetes (T2D), both activate the critical cellular energy sensor 5'-AMP-activated protein kinase (AMPK) via modulation of mitochondrial complex I activity. Activation of AMPK results in both acute responses and chronic adaptations, which serve to restore energy homeostasis. Metformin is thought to elicit its beneficial effects on maintenance of glucose homeostasis primarily though impacting glucose and fat metabolism in the liver. Given the commonalities in their mechanisms of action and that R118 also improves glucose homeostasis in a murine model of T2D, the effects of both R118 and metformin on metabolic pathways in vivo were compared in order to determine whether R118 elicits its beneficial effects through similar mechanisms. RESULTS: Global metabolite profiling of tissues and plasma from mice with diet-induced obesity chronically treated with either R118 or metformin revealed tissue-selective effects of each compound. Whereas metformin treatment resulted in stronger reductions in glucose and lipid metabolites in the liver compared to R118, upregulation of skeletal muscle glycolysis and lipolysis was apparent only in skeletal muscle from R118-treated animals. Both compounds increased ß-hydroxybutyrate levels, but this effect was lost after compound washout. Metformin, but not R118, increased plasma levels of metabolites involved in purine metabolism. CONCLUSIONS: R118 treatment but not metformin resulted in increased glycolysis and lipolysis in skeletal muscle. In contrast, metformin had a greater impact than R118 on glucose and fat metabolism in liver tissue.


Subject(s)
Adenylate Kinase/metabolism , Diet, High-Fat , Enzyme Activators/therapeutic use , Metformin/therapeutic use , Obesity/metabolism , Animals , Enzyme Activators/pharmacology , Male , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Obesity/drug therapy
7.
Am J Physiol Heart Circ Physiol ; 306(8): H1128-45, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24561866

ABSTRACT

Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.


Subject(s)
AMP-Activated Protein Kinases/physiology , Diet, High-Fat , Enzyme Activators/administration & dosage , Obesity/complications , Peripheral Vascular Diseases/physiopathology , Physical Exertion/physiology , Aging , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/physiology , Arginine/analogs & derivatives , Arginine/blood , Cilostazol , Disease Models, Animal , Enzyme Activation/drug effects , Humans , Intermittent Claudication/complications , Intermittent Claudication/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Fatigue/drug effects , Muscle, Skeletal/blood supply , Nitric Oxide Synthase Type III/metabolism , Peripheral Vascular Diseases/etiology , Phosphodiesterase 3 Inhibitors/administration & dosage , Tetrazoles/administration & dosage , Vasodilator Agents
8.
PLoS One ; 8(12): e81870, 2013.
Article in English | MEDLINE | ID: mdl-24339975

ABSTRACT

Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK). Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively). R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13)C-palmitate and (13)C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/metabolism , Mitochondria, Liver/metabolism , Muscle Cells/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Diabetes Mellitus, Experimental/pathology , Enzyme Activation/drug effects , Fatty Acids/metabolism , Glucose/metabolism , Hep G2 Cells , Humans , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Mice , Mitochondria, Liver/pathology , Muscle Cells/pathology , Oxidation-Reduction/drug effects , Palmitates/pharmacology , Protein Kinase Inhibitors/pharmacology
9.
J Cancer Res Clin Oncol ; 136(1): 99-113, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19609559

ABSTRACT

PURPOSE: Aurora kinases play a key role in mitotic progression. Over-expression of Aurora kinases is found in several human cancers and correlated with histological malignancy and clinical outcomes. Therefore, Aurora kinase inhibitors should be useful in the treatment of cancers. METHODS: Cell-based screening methods have an advantage over biochemical approaches because hits can be optimized to inhibit targets in the proper intracellular context. We developed a novel Aurora kinase inhibitor R763/AS703569 using an image-based phenotypic screen. The anti-proliferative effect was examined in a panel of tumor cell lines and primary cells. The efficacy was determined in a broad panel of xenograft models. RESULTS: R763/AS703569 inhibits Aurora kinases, along with a limited number of other kinases including FMS-related tyrosine kinase 3 (FLT3), and has potent anti-proliferative activity against many cell types accompanying unique phenotypic changes such as enlarged cell size, endoreduplication and apoptosis. The endoreduplication cycle induced by R763/AS703569 was irreversible even after the compound was withdrawn from the culture. Oral administration of R763/AS703569 demonstrated marked inhibition of tumor growth in xenograft models of pancreatic, breast, colon, ovarian, and lung tumors and leukemia. An acute myeloid leukemia cell line MV4-11, which carries a FLT3 internal tandem duplication mutation, is particularly sensitive to R763/AS703569 in vivo. CONCLUSIONS: R763/AS703569 is a potent inhibitor of Aurora kinases and exhibited significant anti-proliferative activity against a wide range of tumor cells both in vitro and in vivo. Inhibition of Aurora kinases has the potential to be a new addition to the treatment of cancers.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Microscopy, Fluorescence/methods , Norbornanes/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Aurora Kinases , Cell Cycle/drug effects , Cell Line, Tumor , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Flow Cytometry , HL-60 Cells , HeLa Cells , Humans , Mice , Mice, Inbred NOD , Mice, Inbred Strains , Mice, Nude , Mice, SCID , Survival Analysis , Xenograft Model Antitumor Assays
10.
Mol Biol Cell ; 16(12): 5621-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16195352

ABSTRACT

Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Cell Division/physiology , Neoplasms/enzymology , Binding Sites , CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/genetics , Cell Line, Tumor , Cloning, Molecular , HeLa Cells , Humans , Kinetics , Oligonucleotides, Antisense , Recombinant Proteins/metabolism , Retroviridae/genetics , Transcription, Genetic , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...