Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Neuroinflammation ; 20(1): 291, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057803

ABSTRACT

Current effective therapies for autoimmune diseases rely on systemic immunomodulation that broadly affects all T and/or B cell responses. An ideal therapeutic approach would combine autoantigen-specific targeting of both T and B cell effector functions, including efficient removal of pathogenic autoantibodies. Albeit multiple strategies to induce T cell tolerance in an autoantigen-specific manner have been proposed, therapeutic removal of autoantibodies remains a significant challenge. Here, we devised an approach to target both autoantigen-specific T cells and autoantibodies by producing a central nervous system (CNS) autoantigen myelin oligodendrocyte glycoprotein (MOG)-Fc fusion protein. We demonstrate that MOG-Fc fusion protein has significantly higher bioavailability than monomeric MOG and is efficient in clearing anti-MOG autoantibodies from circulation. We also show that MOG-Fc promotes T cell tolerance and protects mice from MOG-induced autoimmune encephalomyelitis. This multipronged targeting approach may be therapeutically advantageous in the treatment of autoimmunity.


Subject(s)
Autoantibodies , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , T-Lymphocytes , Myelin-Associated Glycoprotein , Encephalomyelitis, Autoimmune, Experimental/pathology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Autoantigens
2.
Cancers (Basel) ; 15(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36980752

ABSTRACT

Kirsten rat sarcoma virus (KRAS)-mutant cancers are frequent, metastatic, lethal, and largely undruggable. While interleukin (IL)-1ß and nuclear factor (NF)-κB inhibition hold promise against cancer, untargeted treatments are not effective. Here, we show that human KRAS-mutant cancers are addicted to IL-1ß via inflammatory versican signaling to macrophage inhibitor of NF-κB kinase (IKK) ß. Human pan-cancer and experimental NF-κB reporter, transcriptome, and proteome screens reveal that KRAS-mutant tumors trigger macrophage IKKß activation and IL-1ß release via secretory versican. Tumor-specific versican silencing and macrophage-restricted IKKß deletion prevents myeloid NF-κB activation and metastasis. Versican and IKKß are mutually addicted and/or overexpressed in human cancers and possess diagnostic and prognostic power. Non-oncogene KRAS/IL-1ß addiction is abolished by IL-1ß and TLR1/2 inhibition, indicating cardinal and actionable roles for versican and IKKß in metastasis.

3.
J Biol Chem ; 299(4): 103072, 2023 04.
Article in English | MEDLINE | ID: mdl-36849007

ABSTRACT

Proteinase 3 (PR3) is the main target antigen of antineutrophil cytoplasmic antibodies (ANCAs) in PR3-ANCA-associated vasculitis. A small fraction of PR3 is constitutively exposed on the surface of quiescent blood neutrophils in a proteolytically inactive form. When activated, neutrophils expose an induced form of membrane-bound PR3 (PR3mb) on their surface as well, which is enzymatically less active than unbound PR3 in solution due to its altered conformation. In this work, our objective was to understand the respective role of constitutive and induced PR3mb in the immune activation of neutrophils triggered by murine anti-PR3 mAbs and human PR3-ANCA. We quantified immune activation of neutrophils by the measurement of the production of superoxide anions and secreted protease activity in the cell supernatant before and after treatment of the cells by alpha-1 protease inhibitor that clears induced PR3mb from the cell surface. Incubation of TNFα-primed neutrophils with anti-PR3 antibodies resulted in a significant increase in superoxide anion production, membrane activation marker exposition, and secreted protease activity. When primed neutrophils were first treated with alpha-1 protease inhibitor, we observed a partial reduction in antibody-induced neutrophil activation, suggesting that constitutive PR3mb is sufficient to activate neutrophils. The pretreatment of primed neutrophils with purified antigen-binding fragments used as competitor significantly reduced cell activation by whole antibodies. This led us to the conclusion that PR3mb promoted immune activation of neutrophils. We propose that blocking and/or elimination of PR3mb offers a new therapeutic strategy to attenuate neutrophil activation in patients with PR3-ANCA-associated vasculitis.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Myeloblastin , Animals , Humans , Mice , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/metabolism , Myeloblastin/immunology , Myeloblastin/metabolism , Neutrophils/metabolism , Protease Inhibitors/metabolism , Superoxides/metabolism
4.
Arthritis Rheumatol ; 75(5): 748-759, 2023 05.
Article in English | MEDLINE | ID: mdl-36515151

ABSTRACT

OBJECTIVE: Proteinase 3 (PR3) is the major antigen for antineutrophil cytoplasmic antibodies (ANCAs) in the systemic autoimmune vasculitis, granulomatosis with polyangiitis (GPA). PR3-targeting ANCAs (PR3-ANCAs) recognize different epitopes on PR3. This study was undertaken to study the effect of mutations on PR3 antigenicity. METHODS: The recombinant PR3 variants, iPR3 (clinically used to detect PR3-ANCAs) and iHm5 (containing 3 point mutations in epitopes 1 and 5 generated for epitope mapping studies) immunoassays and serum samples from patients enrolled in ANCA-associated vasculitis (AAV) trials were used to screen for differential PR3-ANCA binding. A patient-derived monoclonal ANCA 518 (moANCA518) that selectively binds to iHm5 within the mutation-free epitope 3 and is distant from the point mutations of iHm5 was used as a gauge for remote epitope activation. Selective binding was determined using inhibition experiments. RESULTS: Rather than reduced binding of PR3-ANCAs to iHm5, we found substantially increased binding of the majority of PR3-ANCAs to iHm5 compared to iPR3. This differential binding of PR3-ANCA to iHm5 is similar to the selective moANCA518 binding to iHm5. Binding of iPR3 to monoclonal antibody MCPR3-2 also induced recognition by moANCA518. CONCLUSION: The preferential binding of PR3-ANCAs from patients, such as the selective binding of moANCA518 to iHm5, is conferred by increased antigenicity of epitope 3 on iHm5. This can also be induced on iPR3 when captured by monoclonal antibody MCPR2. This previously unrecognized characteristic of PR3-ANCA interactions with its target antigen has implications for studying antibody-mediated autoimmune diseases, understanding variable performance characteristics of immunoassays, and design of potential novel treatment approaches.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic , Granulomatosis with Polyangiitis , Humans , Myeloblastin/genetics , Epitopes , Granulomatosis with Polyangiitis/genetics , Antibodies, Monoclonal
6.
J Clin Invest ; 132(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36125911

ABSTRACT

BackgroundAntineutrophil cytoplasmic autoantibody-associated (ANCA-associated) vasculitidies (AAV) are life-threatening systemic autoimmune conditions. ANCAs directed against proteinase 3 (PR3) or myeloperoxidase (MPO) bind their cell surface-presented antigen, activate neutrophils, and cause vasculitis. An imbalance between PR3 and its major inhibitor α1-antitrypsin (AAT) was proposed to underlie PR3- but not MPO-AAV. We measured AAT and PR3 in healthy individuals and patients with AAV and studied protective AAT effects pertaining to PR3- and MPO-ANCA.MethodsPlasma and blood neutrophils were assessed for PR3 and AAT. WT, mutant, and oxidation-resistant AAT species were produced to characterize AAT-PR3 interactions by flow cytometry, immunoblotting, fluorescence resonance energy transfer assays, and surface plasmon resonance measurements. Neutrophil activation was measured using the ferricytochrome C assay and AAT methionine-oxidation by Parallel Reaction Monitoring.ResultsWe found significantly increased PR3 and AAT pools in patients with both PR3- and MPO-AAV; however, only in PR3-AAV did the PR3 pool correlate with the ANCA titer, inflammatory response, and disease severity. Mechanistically, AAT prevented PR3 from binding to CD177, thereby reducing neutrophil surface antigen for ligation by PR3-ANCA. Active patients with PR3-AAV showed critical methionine-oxidation in plasma AAT that was recapitulated by ANCA-activated neutrophils. The protective PR3-related AAT effects were compromised by methionine-oxidation in the AAT reactive center loop but preserved when 2 critical methionines were substituted with valine and leucine.ConclusionPathogenic differences between PR3- and MPO-AAV are related to AAT regulation of membrane-PR3, attenuating neutrophil activation by PR3-ANCA rather than MPO-ANCA. Oxidation-resistant AAT could serve as adjunctive therapy in PR3-AAV.FUNDINGThis work was supported by KE 576/10-1 from the Deutsche Forschungsgemeinschaft, SCHR 771/8-1 from the Deutsche Forschungsgemeinschaft, grant 394046635 - SFB 1365 from the Deutsche Forschungsgemeinschaft, and ECRC grants.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Giant Cell Arteritis , Mucocutaneous Lymph Node Syndrome , alpha 1-Antitrypsin , Humans , Antibodies, Antineutrophil Cytoplasmic , Methionine/metabolism , Myeloblastin/genetics , Neutrophil Activation , Peroxidase/genetics , Peroxidase/metabolism , alpha 1-Antitrypsin/metabolism
7.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-35997679

ABSTRACT

Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-ß, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-ß-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.


Subject(s)
Interferon Type I , Nucleic Acids , Vasculitis , Animals , Lung , Macrophages , Membrane Proteins/metabolism , Mice , Nucleotidyltransferases
8.
Biochem Pharmacol ; 194: 114803, 2021 12.
Article in English | MEDLINE | ID: mdl-34678221

ABSTRACT

Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cathepsin C/antagonists & inhibitors , Cathepsin C/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Cathepsin C/chemistry , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Serine Proteases/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
9.
Cancer Res ; 81(13): 3568-3579, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33941611

ABSTRACT

Tumor-derived protein tissue inhibitor of metalloproteinases-1 (TIMP1) correlates with poor prognosis in many cancers, including highly lethal pancreatic ductal adenocarcinoma (PDAC). The noncanonical signaling activity of TIMP1 is emerging as one basis for its contribution to cancer progression. However, TIMP1-triggered progression-related biological processes are largely unknown. Formation of neutrophil extracellular traps (NET) in the tumor microenvironment is known to drive progression of PDAC, but factors or molecular mechanisms initiating NET formation in PDAC remain elusive. In this study, gene-set enrichment analysis of a human PDAC proteome dataset revealed that TIMP1 protein expression most prominently correlates with neutrophil activation in patient-derived tumor tissues. TIMP1 directly triggered formation of NETs in primary human neutrophils, which was dependent on the interaction of TIMP1 with its receptor CD63 and subsequent ERK signaling. In genetically engineered PDAC-bearing mice, TIMP1 significantly contributed to NET formation in tumors, and abrogation of TIMP1 or NETs prolonged survival. In patient-derived PDAC tumors, NETs predominantly colocalized with areas of elevated TIMP1 expression. Furthermore, TIMP1 plasma levels correlated with DNA-bound myeloperoxidase, a NET marker, in the blood of patients with PDAC. A combination of plasma levels of TIMP1 and NETs with the clinically established marker CA19-9 allowed improved identification of prognostically distinct PDAC patient subgroups. These observations may have a broader impact, because elevated systemic levels of TIMP1 are associated with the progression of a wide range of neutrophil-involved inflammatory diseases. SIGNIFICANCE: These findings highlight the prognostic relevance of TIMP1 and neutrophil extracellular traps in highly lethal pancreatic cancer, where a noncanonical TIMP1/CD63/ERK signaling axis induces NET formation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3568/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/pathology , Extracellular Traps/physiology , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/pathology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/physiology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prognosis , Survival Rate , Tissue Inhibitor of Metalloproteinase-1/genetics , Tumor Cells, Cultured , Tumor Microenvironment
10.
Brain ; 144(8): 2375-2389, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33704436

ABSTRACT

Antibodies to myelin oligodendrocyte glycoprotein (MOG-Abs) define a distinct disease entity. Here we aimed to understand essential structural features of MOG required for recognition by autoantibodies from patients. We produced the N-terminal part of MOG in a conformationally correct form; this domain was insufficient to identify patients with MOG-Abs by ELISA even after site-directed binding. This was neither due to a lack of lipid embedding nor to a missing putative epitope at the C-terminus, which we confirmed to be an intracellular domain. When MOG was displayed on transfected cells, patients with MOG-Abs recognized full-length MOG much better than its N-terminal part with the first hydrophobic domain (P < 0.0001). Even antibodies affinity-purified with the extracellular part of MOG recognized full-length MOG better than the extracellular part of MOG after transfection. The second hydrophobic domain of MOG enhanced the recognition of the extracellular part of MOG by antibodies from patients as seen with truncated variants of MOG. We confirmed the pivotal role of the second hydrophobic domain by fusing the intracellular part of MOG from the evolutionary distant opossum to the human extracellular part; the chimeric construct restored the antibody binding completely. Further, we found that in contrast to 8-18C5, MOG-Abs from patients bound preferentially as F(ab')2 rather than Fab. It was previously found that bivalent binding of human IgG1, the prominent isotype of MOG-Abs, requires that its target antigen is displayed at a distance of 13-16 nm. We found that, upon transfection, molecules of MOG did not interact so closely to induce a Förster resonance energy transfer signal, indicating that they are more than 6 nm apart. We propose that the intracellular part of MOG holds the monomers apart at a suitable distance for bivalent binding; this could explain why a cell-based assay is needed to identify MOG-Abs. Our finding that MOG-Abs from most patients require bivalent binding has implications for understanding the pathogenesis of MOG-Ab associated disorders. Since bivalently bound antibodies have been reported to only poorly bind C1q, we speculate that the pathogenicity of MOG-Abs is mostly mediated by other mechanisms than complement activation. Therefore, therapeutic inhibition of complement activation should be less efficient in MOG-Ab associated disorders than in patients with antibodies to aquaporin-4 .


Subject(s)
Autoantibodies/immunology , Epitopes/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Adult , Female , Humans , Male
11.
Front Immunol ; 12: 571933, 2021.
Article in English | MEDLINE | ID: mdl-33679731

ABSTRACT

Granulomatosis with polyangiitis (GPA) is a rare but serious necrotizing auto-immune vasculitis. GPA is mostly associated with the presence of Anti-Neutrophil Cytoplasmic Antibody (ANCA) targeting proteinase 3 (PR3-ANCA), a serine protease contained in neutrophil granules but also exposed at the membrane. PR3-ANCAs have a proven fundamental role in GPA: they bind neutrophils allowing their auto-immune activation responsible for vasculitis lesions. PR3-ANCAs bind neutrophil surface on the one hand by their Fab binding PR3 and on the other by their Fc binding Fc gamma receptors. Despite current therapies, GPA is still a serious disease with an important mortality and a high risk of relapse. Furthermore, although PR3-ANCAs are a consistent biomarker for GPA diagnosis, relapse management currently based on their level is inconsistent. Indeed, PR3-ANCA level is not correlated with disease activity in 25% of patients suggesting that not all PR3-ANCAs are pathogenic. Therefore, the development of new biomarkers to evaluate disease activity and predict relapse and new therapies is necessary. Understanding factors influencing PR3-ANCA pathogenicity, i.e. their potential to induce auto-immune activation of neutrophils, offers interesting perspectives in order to improve GPA management. Most relevant factors influencing PR3-ANCA pathogenicity are involved in their interaction with neutrophils: level of PR3 autoantigen at neutrophil surface, epitope of PR3 recognized by PR3-ANCA, isotype and glycosylation of PR3-ANCA. We detailed in this review the advances in understanding these factors influencing PR3-ANCA pathogenicity in order to use them as biomarkers and develop new therapies in GPA as part of a personalized approach.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic/immunology , Granulomatosis with Polyangiitis/immunology , Myeloblastin/immunology , Neutrophils/immunology , Antibodies, Antineutrophil Cytoplasmic/metabolism , Biomarkers/metabolism , Granulomatosis with Polyangiitis/metabolism , Granulomatosis with Polyangiitis/therapy , Humans , Myeloblastin/metabolism , Neutrophils/metabolism , Peroxidase/immunology , Peroxidase/metabolism , Protein Binding , Recurrence , Risk Factors
12.
Int J Mol Sci ; 22(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562184

ABSTRACT

The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.


Subject(s)
Cell Lineage , Monocytes/enzymology , Myeloid Cells/enzymology , Serine Proteases/metabolism , Animals , Cathepsin G/metabolism , Humans , Leukocyte Elastase/metabolism , Monocytes/cytology , Myeloblastin/metabolism , Myeloid Cells/cytology
14.
Eur Respir J ; 57(5)2021 05.
Article in English | MEDLINE | ID: mdl-33303550

ABSTRACT

Bronchiolitis obliterans syndrome (BOS) is a major complication after lung transplantation (LTx). BOS is characterised by massive peribronchial fibrosis, leading to air trapping-induced pulmonary dysfunction. Cathepsin B, a lysosomal cysteine protease, has been shown to enforce fibrotic pathways in several diseases. However, the relevance of cathepsin B in BOS progression has not yet been addressed. The aim of the study was to elucidate the function of cathepsin B in BOS pathogenesis.We determined cathepsin B levels in bronchoalveolar lavage fluid (BALF) and lung tissue from healthy donors (HD) and BOS LTx patients. Cathepsin B activity was assessed via a fluorescence resonance energy transfer-based assay and protein expression was determined using Western blotting, ELISA and immunostaining. To investigate the impact of cathepsin B in the pathophysiology of BOS, we used an in vivo orthotopic left LTx mouse model. Mechanistic studies were performed in vitro using macrophage and fibroblast cell lines.We found a significant increase of cathepsin B activity in BALF and lung tissue from BOS patients, as well as in our murine model of lymphocytic bronchiolitis. Moreover, cathepsin B activity was associated with increased biosynthesis of collagen and had a negative effect on lung function. We observed that cathepsin B was mainly expressed in macrophages that infiltrated areas characterised by a massive accumulation of collagen deposition. Mechanistically, macrophage-derived cathepsin B contributed to transforming growth factor-ß1-dependent activation of fibroblasts, and its inhibition reversed the phenotype.Infiltrating macrophages release active cathepsin B, thereby promoting fibroblast activation and subsequent collagen deposition, which drive BOS. Cathepsin B represents a promising therapeutic target to prevent the progression of BOS.


Subject(s)
Bronchiolitis Obliterans , Lung Transplantation , Animals , Bronchoalveolar Lavage Fluid , Cathepsin B , Humans , Lung , Mice
15.
J Med Chem ; 63(22): 13258-13265, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32692176

ABSTRACT

Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Cathepsin C/antagonists & inhibitors , Lung/drug effects , Protease Inhibitors/pharmacology , Respiratory Distress Syndrome/drug therapy , Animals , COVID-19/enzymology , Cell Line, Tumor , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Lung/immunology , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/enzymology , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Respiratory Distress Syndrome/enzymology
16.
Front Immunol ; 10: 2467, 2019.
Article in English | MEDLINE | ID: mdl-31708920

ABSTRACT

Mutants of a catalytically inactive variant of Proteinase 3 (PR3)-iPR3-Val103 possessing a Ser195Ala mutation relative to wild-type PR3-Val103-offer insights into how autoantigen PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis with polyangiitis (GPA) and whether such interactions can be interrupted. Here we report that iHm5-Val103, a triple mutant of iPR3-Val103, bound a monoclonal antibody (moANCA518) from a GPA patient on an epitope remote from the mutation sites, whereas the corresponding epitope of iPR3-Val103 was latent to moANCA518. Simulated B-factor analysis revealed that the binding of moANCA518 to iHm5-Val103 was due to increased main-chain flexibility of the latent epitope caused by remote mutations, suggesting rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions as new GPA treatments.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic/immunology , Autoantigens/immunology , Epitopes/immunology , Granulomatosis with Polyangiitis/immunology , Myeloblastin/immunology , Computer Simulation , Granulomatosis with Polyangiitis/therapy , HEK293 Cells , Humans , Mutation , Myeloblastin/chemistry , Myeloblastin/genetics , Protein Conformation
17.
Int J Mol Sci ; 20(19)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557781

ABSTRACT

Cysteine cathepsin C (CatC) is a ubiquitously expressed, lysosomal aminopeptidase involved in the activation of zymogens of immune-cell-associated serine proteinases (elastase, cathepsin G, proteinase 3, neutrophil serine proteinase 4, lymphocyte granzymes, and mast cell chymases). CatC is first synthetized as an inactive zymogen containing an intramolecular chain propeptide, the dimeric form of which is processed into the mature tetrameric form by proteolytic cleavages. A molecular modeling analysis of proCatC indicated that its propeptide displayed a similar fold to those of other lysosomal cysteine cathepsins, and could be involved in dimer formation. Our in vitro experiments revealed that human proCatC was processed and activated by CatF, CatK, and CatV in two consecutive steps of maturation, as reported for CatL and CatS previously. The unique positioning of the propeptide domains in the proCatC dimer complex allows this order of cleavages to be understood. The missense mutation Leu172Pro within the propeptide region associated with the Papillon-Lefèvre and Haim-Munk syndrome altered the proform stability as well as the maturation of the recombinant Leu172Pro proform.


Subject(s)
Cathepsin C/chemistry , Enzyme Precursors/chemistry , Models, Molecular , Molecular Conformation , Binding Sites , Humans , Protein Binding , Recombinant Proteins/chemistry
18.
Sci Rep ; 9(1): 9925, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31289357

ABSTRACT

Neutrophil serine proteases (NSPs), like proteinase 3 (PR3) and neutrophil elastase (NE) are implicated in ischemia-reperfusion responses after lung transplantation (LTx). Cathepsin C (CatC) acts as the key regulator of NSP maturation during biosynthesis. We hypothesized that CatC inhibitors would reduce vascular breakdown and inflammation during reperfusion in pretreated lung transplant recipients by blocking NSP maturation in the bone marrow. An orthotopic LTx model in mice was used to mimic the induction of an ischemia-reperfusion response after 18 h cold storage of the graft and LTx. Recipient mice were treated subcutaneously with a chemical CatC inhibitor (ICatC) for 10 days prior to LTx. We examined the effect of the ICatC treatment by measuring the gas exchange function of the left lung graft, protein content, neutrophil numbers and NSP activities in the bone marrow 4 h after reperfusion. Pre-operative ICatC treatment of the recipient mice improved early graft function and lead to the disappearance of active NSP protein in the transplanted lung. NSP activities were also substantially reduced in bone marrow neutrophils. Preemptive NSP reduction by CatC inhibition may prove to be a viable and effective approach to reduce immediate ischemia reperfusion responses after LTx.


Subject(s)
Cathepsin C/antagonists & inhibitors , Inflammation/prevention & control , Lung Transplantation/adverse effects , Premedication/methods , Primary Graft Dysfunction/prevention & control , Protease Inhibitors/pharmacology , Animals , Inflammation/etiology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Primary Graft Dysfunction/etiology , Primary Graft Dysfunction/pathology
19.
Front Immunol ; 10: 1189, 2019.
Article in English | MEDLINE | ID: mdl-31244828

ABSTRACT

Autoantibodies to myelin oligodendrocytes glycoprotein (MOG) are found in a fraction of patients with inflammatory demyelination and are detected with MOG-transfected cells. While the prototype anti-MOG mAb 8-18C5 and polyclonal anti-MOG responses from different mouse strains largely recognize the FG loop of MOG, the human anti-MOG response is more heterogeneous and human MOG-Abs recognizing different epitopes were found to be pathogenic. The aim of this study was to get further insight into details of antigen-recognition by human MOG-Abs focusing on the impact of glycosylation. MOG has one known N-glycosylation site at N31 located in the BC loop linking two beta-sheets. We compared the reactivity to wild type MOG with that toward two different mutants in which the neutral asparagine of N31 was mutated to negatively charged aspartate or to the neutral alanine. We found that around 60% of all patients (16/27) showed an altered reactivity to one or both of the mutations. We noted seven different patterns of recognition of the two glycosylation-deficient mutants by different patients. The introduced negative charge at N31 enhanced recognition in some, but reduced recognition in other patients. In 7/27 patients the neutral glycosylation-deficient mutant was recognized stronger. The folding of the extracellular domain of MOG with the formation of beta-sheets did not depend on its glycosylation as seen by circular dichroism. We determined the glycan structure of MOG produced in HEK cells by mass spectrometry. The most abundant glycoforms of MOG expressed in HEK cells are diantennary, contain a core fucose, an antennary fucose, and are decorated with α2,6 linked Neu5Ac, while details of the glycoforms of MOG in myelin remain to be identified. Together, we (1) increase the knowledge about heterogeneity of human autoantibodies to MOG, (2) show that the BC loop affects recognition in about 60% of the patients, (3) report that all patients recognized the unglycosylated protein backbone, while (4) in about 20% of the patients the attached sugar reduces autoantibody binding presumably via steric hindrance. Thus, a neutral glycosylation-deficient mutant of MOG might enhance the sensitivity to identify MOG-Abs.


Subject(s)
Antibody Specificity , Autoantibodies/immunology , Epitopes/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Adult , Female , Glycosylation , HeLa Cells , Humans , Male , Protein Domains , Protein Structure, Secondary
20.
Biochem Pharmacol ; 164: 349-367, 2019 06.
Article in English | MEDLINE | ID: mdl-30978322

ABSTRACT

Cathepsin C (CatC) is a dipeptidyl-exopeptidase which activates neutrophil serine protease precursors (elastase, proteinase 3, cathepsin G and NSP4) by removing their N-terminal propeptide in bone marrow cells at the promyelocytic stage of neutrophil differentiation. The resulting active proteases are implicated in chronic inflammatory and autoimmune diseases. Hence, inhibition of CatC represents a therapeutic strategy to suppress excessive protease activities in various neutrophil mediated diseases. We designed and synthesized a series of dipeptidyl cyclopropyl nitrile compounds as putative CatC inhibitors. One compound, IcatCXPZ-01 ((S)-2-amino-N-((1R,2R)-1-cyano-2-(4'-(4-methylpiperazin-1-ylsulfonyl)biphenyl-4-yl)cyclopropyl)butanamide)) was identified as a potent inhibitor of both human and rodent CatC. In mice, pharmacokinetic studies revealed that IcatCXPZ-01 accumulated in the bone marrow reaching levels suitable for CatC inhibition. Subcutaneous administration of IcatCXPZ-01 in a monoclonal anti-collagen antibody induced mouse model of rheumatoid arthritis resulted in statistically significant anti-arthritic activity with persistent decrease in arthritis scores and paw thickness.


Subject(s)
Anti-Asthmatic Agents/chemistry , Anti-Asthmatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cathepsin C/antagonists & inhibitors , Cathepsin C/metabolism , Animals , Anti-Asthmatic Agents/pharmacology , Crystallography, X-Ray/methods , Drug Evaluation, Preclinical/methods , Humans , Male , Mice , Mice, Inbred BALB C , Random Allocation , Structure-Activity Relationship , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL