Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Infect Control Hosp Epidemiol ; 45(6): 709-716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38344902

ABSTRACT

OBJECTIVES: New Delhi metallo-ß-lactamases (NDMs) are major contributors to the spread of carbapenem resistance globally. In Australia, NDMs were previously associated with international travel, but from 2019 we noted increasing incidence of NDM-positive clinical isolates. We investigated the clinical and genomic epidemiology of NDM carriage at a tertiary-care Australian hospital from 2016 to 2021. METHODS: We identified 49 patients with 84 NDM-carrying isolates in an institutional database, and we collected clinical data from electronic medical record. Short- and long-read whole genome sequencing was performed on all isolates. Completed genome assemblies were used to assess the genetic setting of blaNDM genes and to compare NDM plasmids. RESULTS: Of 49 patients, 38 (78%) were identified in 2019-2021 and only 11 (29%) of 38 reported prior travel, compared with 9 (82%) of 11 in 2016-2018 (P = .037). In patients with NDM infection, the crude 7-day mortality rate was 0% and the 30-day mortality rate was 14% (2 of 14 patients). NDMs were noted in 41 bacterial strains (ie, species and sequence type combinations). Across 13 plasmid groups, 4 NDM variants were detected: blaNDM-1, blaNDM-4, blaNDM-5, and blaNDM-7. We noted a change from a diverse NDM plasmid repertoire in 2016-2018 to the emergence of conserved blaNDM-1 IncN and blaNDM-7 IncX3 epidemic plasmids, with interstrain spread in 2019-2021. These plasmids were noted in 19 (50%) of 38 patients and 35 (51%) of 68 genomes in 2019-2021. CONCLUSIONS: Increased NDM case numbers were due to local circulation of 2 epidemic plasmids with extensive interstrain transfer. Our findings underscore the challenges of outbreak detection when horizontal transmission of plasmids is the primary mode of spread.


Subject(s)
Disease Outbreaks , Plasmids , beta-Lactamases , Humans , beta-Lactamases/genetics , Plasmids/genetics , Male , Female , Middle Aged , Aged , Australia/epidemiology , Whole Genome Sequencing , Adult , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/transmission , Enterobacteriaceae Infections/microbiology , Gene Transfer, Horizontal , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Genome, Bacterial
2.
BMJ Glob Health ; 9(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38232993

ABSTRACT

Antimicrobial resistance (AMR) is an urgent and growing global health concern, and a clear understanding of existing capacities to address AMR, particularly in low-income and middle-income countries (LMICs), is needed to inform national priorities, investment targets and development activities. Across LMICs, there are limited data regarding existing mechanisms to address AMR, including national AMR policies, current infection prevention and antimicrobial prescribing practices, antimicrobial use in animals, and microbiological testing capacity for AMR. Despite the development of numerous individual tools designed to inform policy formulation and implementation or surveillance interventions to address AMR, there is an unmet need for easy-to-use instruments that together provide a detailed overview of AMR policy, practice and capacity. This paper describes the development of a framework comprising five assessment tools which provide a detailed assessment of country capacity to address AMR within both the human and animal health sectors. The framework is flexible to meet the needs of implementers, as tools can be used separately to assess the capacity of individual institutions or as a whole to align priority-setting and capacity-building with AMR National Action Plans (NAPs) or national policies. Development of the tools was conducted by a multidisciplinary team across three phases: (1) review of existing tools; (2) adaptation of existing tools; and (3) piloting, refinement and finalisation. The framework may be best used by projects which aim to build capacity and foster cross-sectoral collaborations towards the surveillance of AMR, and by LMICs wishing to conduct their own assessments to better understand capacity and capabilities to inform future investments or the implementation of NAPs for AMR.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Humans , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Policy , Capacity Building
3.
Elife ; 122023 10 10.
Article in English | MEDLINE | ID: mdl-37815531

ABSTRACT

Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale metabolic models are useful tools for studying the metabolic potential of individuals, and with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for comparative analysis. However, there exist few tools to construct strain-specific metabolic models at scale. Here, we describe Bactabolize, a reference-based tool which rapidly produces strain-specific metabolic models and growth phenotype predictions. We describe a pan reference model for the priority antimicrobial-resistant pathogen, Klebsiella pneumoniae, and a quality control framework for using draft genome assemblies as input for Bactabolize. The Bactabolize-derived model for K. pneumoniae reference strain KPPR1 performed comparatively or better than currently available automated approaches CarveMe and gapseq across 507 substrate and 2317 knockout mutant growth predictions. Novel draft genomes passing our systematically defined quality control criteria resulted in models with a high degree of completeness (≥99% genes and reactions captured compared to models derived from matched complete genomes) and high accuracy (mean 0.97, n=10). We anticipate the tools and framework described herein will facilitate large-scale metabolic modelling analyses that broaden our understanding of diversity within bacterial species and inform novel control strategies for priority pathogens.


Subject(s)
Anti-Infective Agents , Genome, Bacterial , Humans , Klebsiella pneumoniae/genetics , Virulence/genetics , Phenotype , Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology
4.
Nat Commun ; 14(1): 4764, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553339

ABSTRACT

Infections caused by metallo-beta-lactamase-producing organisms (MBLs) are a global health threat. Our understanding of transmission dynamics and how MBLs establish endemicity remains limited. We analysed two decades of blaIMP-4 evolution in a hospital using sequence data from 270 clinical and environmental isolates (including 169 completed genomes) and identified the blaIMP-4 gene across 7 Gram-negative genera, 68 bacterial strains and 7 distinct plasmid types. We showed how an initial multi-species outbreak of conserved IncC plasmids (95 genomes across 37 strains) allowed endemicity to be established through the ability of blaIMP-4 to disseminate in successful strain-genetic setting pairs we termed propagators, in particular Serratia marcescens and Enterobacter hormaechei. From this reservoir, blaIMP-4 persisted through diversification of genetic settings that resulted from transfer of blaIMP-4 plasmids between bacterial hosts and of the integron carrying blaIMP-4 between plasmids. Our findings provide a framework for understanding endemicity and spread of MBLs and may have broader applicability to other carbapenemase-producing organisms.


Subject(s)
Integrons , beta-Lactamases , Integrons/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Plasmids/genetics , Serratia marcescens/genetics , Serratia marcescens/metabolism , Carbapenems/pharmacology , Genomics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
5.
Lancet Reg Health West Pac ; 32: 100677, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36798514

ABSTRACT

Background: There are limited antimicrobial resistance (AMR) surveillance data from low- and middle-income countries, especially from the Pacific Islands region. AMR surveillance data is essential to inform strategies for AMR pathogen control. Methods: We performed a retrospective analysis of antimicrobial susceptibility results from the national microbiology laboratories of four Pacific Island countries - the Cook Islands, Kiribati, Samoa and Tonga - between 2017 and 2021. We focused on four bacteria that have been identified as 'Priority Pathogens' by the World Health Organization: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Findings: Following deduplication, a total of 20,902 bacterial isolates was included in the analysis. The most common organism was E. coli (n = 8455) followed by S. aureus (n = 7830), K. pneumoniae (n = 2689) and P. aeruginosa (n = 1928). The prevalence of methicillin resistance among S. aureus isolates varied between countries, ranging from 8% to 26% in the Cook Islands and Kiribati, to 43% in both Samoa and Tonga. Ceftriaxone susceptibility remained high to moderate among E. coli (87%-94%) and K. pneumoniae (72%-90%), whereas amoxicillin + clavulanate susceptibility was low against these two organisms (50%-54% and 43%-61%, respectively). High susceptibility was observed for all anti-pseudomonal agents (83%-99%). Interpretation: Despite challenges, these Pacific Island laboratories were able to conduct AMR surveillance. These data provide valuable contemporary estimates of AMR prevalence, which will inform local antibiotic formularies, treatment guidelines, and national priorities for AMR policy. Funding: Supported by the National Health and Medical Research Council.

6.
Genome Med ; 14(1): 97, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999578

ABSTRACT

BACKGROUND: Resistance to third-generation cephalosporins, often mediated by extended-spectrum beta-lactamases (ESBLs), is a considerable issue in hospital-associated infections as few drugs remain for treatment. ESBL genes are often located on large plasmids that transfer horizontally between strains and species of Enterobacteriaceae and frequently confer resistance to additional drug classes. Whilst plasmid transmission is recognised to occur in the hospital setting, the frequency and impact of plasmid transmission on infection burden, compared to ESBL + strain transmission, is not well understood. METHODS: We sequenced the genomes of clinical and carriage isolates of Klebsiella pneumoniae species complex from a year-long hospital surveillance study to investigate ESBL burden and plasmid transmission in an Australian hospital. Long-term persistence of a key transmitted ESBL + plasmid was investigated via sequencing of ceftriaxone-resistant isolates during 4 years of follow-up, beginning 3 years after the initial study. RESULTS: We found 25 distinct ESBL plasmids. We identified one plasmid, which we called Plasmid A, that carried blaCTX-M-15 in an IncF backbone similar to pKPN-307. Plasmid A was transmitted at least four times into different Klebsiella species/lineages and was responsible for half of all ESBL episodes during the initial 1-year study period. Three of the Plasmid A-positive strains persisted locally 3-6 years later, and Plasmid A was detected in two additional strain backgrounds. Overall Plasmid A accounted for 21% of ESBL + infections in the follow-up period. CONCLUSIONS: Here, we systematically surveyed ESBL strain and plasmid transmission over 1 year in a single hospital network. Whilst ESBL plasmid transmission events were rare in this setting, they had a significant and sustained impact on the burden of ceftriaxone-resistant and multidrug-resistant infections. If onward transmission of Plasmid A-carrying strains could have been prevented, this may have reduced the number of opportunities for Plasmid A to transmit and create novel ESBL + strains, as well as reducing overall ESBL infection burden.


Subject(s)
Klebsiella pneumoniae , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Australia/epidemiology , Ceftriaxone , Hospitals , Humans , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics
7.
BMC Infect Dis ; 22(1): 704, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002802

ABSTRACT

BACKGROUND: Infections caused by Klebsiella oxytoca are the second most common cause of Klebsiella infections in humans. Most studies have focused on K. oxytoca outbreaks and few have examined the broader clinical context of K. oxytoca. METHODS: Here, we collected all clinical isolates identified as K. oxytoca in a hospital microbiological diagnostic lab across a 15-month period (n = 239). Whole genome sequencing was performed on a subset of 92 isolates (all invasive, third-generation cephalosporin resistant (3GCR) and non-urinary isolates collected > 48 h after admission), including long-read sequencing on a further six isolates with extended-spectrum beta-lactamase or carbapenemase genes. RESULTS: The majority of isolates were sensitive to antimicrobials, however 22 isolates were 3GCR, of which five were also carbapenem resistant. Genomic analyses showed those identified as K. oxytoca by the clinical laboratory actually encompassed four distinct species (K. oxytoca, Klebsiella michiganensis, Klebsiella grimontii and Klebsiella pasteurii), referred to as the K. oxytoca species complex (KoSC). There was significant diversity within the population, with only 10/67 multi-locus sequence types (STs) represented by more than one isolate. Strain transmission was rare, with only one likely event identified. Six isolates had extended spectrum beta-lactamase (blaSHV-12 and/or blaCTX-M-9) or carbapenemase (blaIMP-4) genes. One pair of K. michiganensis and K. pasteurii genomes carried identical blaIMP-4 IncL/M plasmids, indicative of plasmid transmission. CONCLUSION: Whilst antimicrobial resistance was rare, the resistance plasmids were similar to those found in other Enterobacterales, demonstrating that KoSC has access to the same plasmid reservoir and thus there is potential for multi-drug resistance. Further genomic studies are required to improve our understanding of the KoSC population and facilitate investigation into the attributes of successful nosocomial isolates.


Subject(s)
Klebsiella Infections , Klebsiella oxytoca , Humans , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial , Genomics , Hospitals , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella oxytoca/genetics , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids/genetics
8.
Microbiol Spectr ; 10(4): e0151721, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35913154

ABSTRACT

Despite the importance of encapsulation in bacterial pathogenesis, the biochemical mechanisms and forces that underpin retention of capsule by encapsulated bacteria are poorly understood. In Gram-negative bacteria, there may be interactions between lipopolysaccharide (LPS) core and capsule polymers, between capsule polymers with retained acyl carriers and the outer membrane, and in some bacteria, between the capsule polymers and Wzi, an outer membrane protein lectin. Our transposon studies in Klebsiella pneumoniae B5055 identified additional genes that, when insertionally inactivated, resulted in reduced encapsulation. Inactivation of the gene waaL, which encodes the ligase responsible for attaching the repeated O antigen of LPS to the LPS core, resulted in a significant reduction in capsule retention, measured by atomic force microscopy. This reduction in encapsulation was associated with increased sensitivity to human serum and decreased virulence in a murine model of respiratory infection and, paradoxically, with increased biofilm formation. The capsule in the WaaL mutant was physically smaller than that of the Wzi mutant of K. pneumoniae B5055. These results suggest that interactions between surface carbohydrate polymers may enhance encapsulation, a key phenotype in bacterial virulence, and provide another target for the development of antimicrobials that may avoid resistance issues associated with growth inhibition. IMPORTANCE Bacterial capsules, typically comprised of complex sugars, enable pathogens to avoid key host responses to infection, including phagocytosis. These capsules are synthesized within the bacteria, exported through the outer envelope, and then secured to the external surface of the organism by a force or forces that are incompletely described. This study shows that in the important hospital pathogen Klebsiella pneumoniae, the polysaccharide capsule is retained by interactions with other surface sugars, especially the repeated sugar molecule of the LPS molecule in Gram-negative bacteria known as "O antigen." This O antigen is joined to the LPS molecule by ligation, and loss of the enzyme responsible for ligation, a protein called WaaL, results in reduced encapsulation. Since capsules are essential to the virulence of many pathogens, WaaL might provide a target for new antimicrobial development, critical to the control of pathogens like K. pneumoniae that have become highly drug resistant.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Bacterial Capsules/metabolism , Capsules/analysis , Capsules/metabolism , Humans , Klebsiella Infections/metabolism , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Lipopolysaccharides/metabolism , Mice , O Antigens/analysis , O Antigens/metabolism , Polymers/analysis , Polymers/metabolism , Sugars/metabolism
9.
Lancet Reg Health West Pac ; 26: 100533, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35821908

ABSTRACT

Background: Regular repeat surveillance testing is a strategy to identify asymptomatic individuals with SARS-CoV-2 infections in high-risk work settings to prevent onward community transmission. Saliva sampling is less invasive compared to nasal/oropharyngeal sampling, thus making it suitable for regular testing. In this multi-centre evaluation, we aimed to validate RT-PCR using salivary swab testing of SARS-CoV-2 for large-scale surveillance testing and assess implementation amongst staff working in the hotel quarantine system in Victoria, Australia. Methods: A multi-centre laboratory evaluation study was conducted to systematically validate the in vitro and clinical performance of salivary swab RT-PCR for implementation of SARS-CoV-2 surveillance testing. Analytical sensitivity for multiple RT-PCR platforms was assessed using a dilution series of known SARS-CoV-2 viral loads, and assay specificity was examined using a panel of viral pathogens other than SARS-CoV-2. In addition, we tested capacity for large-scale saliva testing using a four-sample pooling approach, where positive pools were subsequently decoupled and retested. Regular, frequent self-collected saliva swab RT-PCR testing was implemented for staff across fourteen quarantine hotels. Samples were tested at three diagnostic laboratories validated in this study, and results were provided back to staff in real-time. Findings: The agreement of self-collected saliva swabs for RT-PCR was 84.5% (95% CI 68.6 to 93.8) compared to RT-PCR using nasal/oropharyngeal swab samples collected by a healthcare practitioner, when saliva samples were collected within seven days of symptom onset. Between 7th December 2020 and 17th December 2021, almost 500,000 RT-PCR tests were performed on saliva swabs self-collected by 102 staff working in quarantine hotels in Melbourne. Of these, 20 positive saliva swabs were produced by 13 staff (0.004%). The majority of staff that tested positive occurred during periods of community transmission of the SARS-CoV-2 Delta variant. Interpretation: Salivary RT-PCR had an acceptable level of agreement compared to standard nasal/oropharyngeal swab RT-PCR within early symptom onset. The scalability, tolerability and ease of self-collection highlights utility for frequent or repeated testing in high-risk settings, such as quarantine or healthcare environments where regular monitoring of staff is critical for public health, and protection of vulnerable populations. Funding: This work was funded by the Victorian Department of Health.

10.
Lancet Reg Health West Pac ; 24: 100488, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35769175

ABSTRACT

Background: Typhoid fever is endemic in some Pacific Island Countries including Fiji and Samoa yet genomic surveillance is not routine in such settings. Previous studies suggested imports of the global H58 clade of Salmonella enterica var Typhi (Salmonella Typhi) contribute to disease in these countries which, given the MDR potential of H58, does not auger well for treatment. The objective of the study was to define the genomic epidemiology of Salmonella Typhi in Fiji. Methods: Genomic sequencing approaches were implemented to study the distribution of 255 Salmonella Typhi isolates from the Central Division of Fiji. We augmented epidemiological surveillance and Bayesian phylogenomic approaches with a multi-year typhoid case-control study to define geospatial patterns among typhoid cases. Findings: Genomic analyses showed Salmonella Typhi from Fiji resolved into 2 non-H58 genotypes with isolates from the two dominant ethnic groups, the Indigenous (iTaukei) and non-iTaukei genetically indistinguishable. Low rates of international importation of clones was observed and overall, there were very low levels an antibiotic resistance within the endemic Fijian typhoid genotypes. Genomic epidemiological investigations were able to identify previously unlinked case clusters. Bayesian phylodynamic analyses suggested that genomic variation within the larger endemic Salmonella Typhi genotype expanded at discreet times, then contracted. Interpretation: Cyclones and flooding drove 'waves' of typhoid outbreaks in Fiji which, through population aggregation, poor sanitation and water safety, and then mobility of the population, spread clones more widely. Minimal international importations of new typhoid clones suggest that targeted local intervention strategies may be useful in controlling endemic typhoid infection. These findings add to our understanding of typhoid transmission networks in an endemic island country with broad implications, particularly across Pacific Island Countries. Funding: This work was supported by the Coalition Against Typhoid through the Bill and Melinda Gates Foundation [grant number OPP1017518], the Victorian Government, the National Health and Medical Research Council Australia, the Australian Research Council, and the Fiji Ministry of Health and Medical Services.

11.
J Glob Antimicrob Resist ; 30: 286-293, 2022 09.
Article in English | MEDLINE | ID: mdl-35738385

ABSTRACT

OBJECTIVES: There are scant primary clinical data on antimicrobial resistance (AMR) burden from low- and middle-income countries (LMICs). We adapted recent World Health Organization methodology to measure the effect of third-generation cephalosporin resistance (3GC-R) on mortality and excess length of hospital stay in Fiji. METHODS: We conducted a prospective cohort study of inpatients with Enterobacterales bloodstream infections (BSIs) at Colonial War Memorial Hospital, Suva. We used cause-specific Cox proportional hazards models to estimate the effect of 3GC-R on the daily risk (hazard) of in-hospital mortality and being discharged alive (competing risks), and we used multistate modelling to estimate the excess length of hospital stay. RESULTS: From July 2020 to February 2021 we identified 162 consecutive Enterobacterales BSIs; 3GC-R was present in 66 (40.7%). Crude mortality for patients with 3GC-susceptible and 3GC-R BSIs was 16.7% (16/96) and 30.3% (20/66), respectively. 3GC-R was not associated with the in-hospital mortality hazard rate (adjusted hazard ratio [aHR] 1.13, 95% confidence interval [CI] 0.51-2.53) or being discharged alive (aHR 0.99, 95% CI 0.65-1.50), whereas Charlson comorbidity index score (aHR 1.62, 95% CI 1.36-1.93) and Pitt bacteraemia score (aHR 3.57, 95% CI 1.31-9.71) were both associated with an increased hazard rate of in-hospital mortality. 3GC-R was associated with an increased length of stay of 2.6 days (95% CI 2.5-2.8). 3GC-R was more common among hospital-associated infections, but genomics did not identify clonal transmission. CONCLUSION: Patients with Enterobacterales BSIs in Fiji had high mortality. There were high rates of 3GC-R, which was associated with increased hospital length of stay but not with in-hospital mortality.


Subject(s)
Bacteremia , Cross Infection , Bacteremia/drug therapy , Cephalosporins , Cross Infection/drug therapy , Fiji/epidemiology , Humans , Length of Stay , Prospective Studies
12.
Nat Commun ; 13(1): 3017, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641522

ABSTRACT

Klebsiella pneumoniae is a major cause of opportunistic healthcare-associated infections, which are increasingly complicated by the presence of extended-spectrum beta-lactamases (ESBLs) and carbapenem resistance. We conducted a year-long prospective surveillance study of K. pneumoniae clinical isolates in hospital patients. Whole-genome sequence (WGS) data reveals a diverse pathogen population, including other species within the K. pneumoniae species complex (18%). Several infections were caused by K. variicola/K. pneumoniae hybrids, one of which shows evidence of nosocomial transmission. A wide range of antimicrobial resistance (AMR) phenotypes are observed, and diverse genetic mechanisms identified (mainly plasmid-borne genes). ESBLs are correlated with presence of other acquired AMR genes (median n = 10). Bacterial genomic features associated with nosocomial onset are ESBLs (OR 2.34, p = 0.015) and rhamnose-positive capsules (OR 3.12, p < 0.001). Virulence plasmid-encoded features (aerobactin, hypermucoidy) are observed at low-prevalence (<3%), mostly in community-onset cases. WGS-confirmed nosocomial transmission is implicated in just 10% of cases, but strongly associated with ESBLs (OR 21, p < 1 × 10-11). We estimate 28% risk of onward nosocomial transmission for ESBL-positive strains vs 1.7% for ESBL-negative strains. These data indicate that K. pneumoniae infections in hospitalised patients are due largely to opportunistic infections with diverse strains, with an additional burden from nosocomially-transmitted AMR strains and community-acquired hypervirulent strains.


Subject(s)
Cross Infection , Klebsiella Infections , Cross Infection/epidemiology , Cross Infection/microbiology , Genomics , Hospitals , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Prospective Studies
13.
Arch Dis Child ; 2022 May 18.
Article in English | MEDLINE | ID: mdl-35584907

ABSTRACT

OBJECTIVES: WHO Integrated Management of Childhood Illness (IMCI) guidelines changed pneumonia hospitalisation criteria in 2014, which was implemented in Lao People's Democratic Republic (Lao PDR) in 2015. We determined adherence to: current (2014) IMCI guidelines for children presenting to hospitals with pneumonia, current outpatient management guidelines and identified hospitalisation predictors. DESIGN: Prospective observational study (January 2017 to December 2018). SETTING: Outpatient and emergency departments of four hospitals in Vientiane, Lao PDR. PATIENTS: 594 children aged 2-59 months diagnosed with pneumonia. MAIN OUTCOME MEASURES: Number of children diagnosed, hospitalised, managed, administered preventive measures and followed-up accordant with current guidelines. RESULTS: Non-severe and severe pneumonia were correctly diagnosed in 97% and 43% of children, respectively. Non-severe pneumonia with lower chest wall indrawing (LCI) was diagnosed as severe in 15%. Hospitalisation rates were: 80% for severe pneumonia, 86% and 3% for non-severe pneumonia with and without LCI, respectively. Outpatient oral antibiotic prescribing was high (99%), but only 30% were prescribed both the recommended antibiotic and duration. Appropriate planned follow-up was 89%. Hospitalisation predictors included age 2-5 months (compared with 24-59 months; OR 3.95, 95% CI 1.90 to 8.24), public transport to hospital (compared with private vehicle; OR 2.60, 95% CI 1.09 to 6.24) and households without piped drinking water (OR 4.67, 95% CI 2.75 to 7.95). CONCLUSIONS: Hospitalisation practice for childhood pneumonia in Lao PDR remains more closely aligned with the 2005 WHO IMCI guidelines than the currently implemented 2014 iteration. Compliance with current outpatient antibiotic prescribing guidelines was low.

14.
Lancet Reg Health West Pac ; 22: 100438, 2022 May.
Article in English | MEDLINE | ID: mdl-35373162

ABSTRACT

Background: Staphylococcus aureus bacteraemia (SAB) is one of the commonest bloodstream infections globally and is associated with a high mortality rate. Most published data comes from temperate, high-income countries. We describe the clinical epidemiology, microbiology, management and outcomes of patients with SAB treated in a tropical, middle-income setting at Fiji's largest hospital. Methods: A prospective, observational study was performed of consecutive SAB cases admitted to Colonial War Memorial Hospital (CWMH) in Suva, between July 2020 and February 2021. Detailed demographic, clinical and microbiological data were collected, including the key outcome of in-patient mortality. To estimate the population incidence, all SAB cases diagnosed at the CWMH laboratory were included - even if not admitted to CWMH - with the population of Fiji's Central Division used as the denominator. Findings: A total of 176 cases of SAB were detected over eight-months, which equated to an incidence of 68.8 cases per 100,000 population per year. Of these, 95 cases were admitted to CWMH within 48 h of index culture. Approximately 8.4% (8/95) of admitted cases were caused by methicillin-resistant Staphylococcus aureus (MRSA). All cause in-patient mortality was 25.3%, increasing to 55% among patients aged 60 or older. Interpretation: This reported incidence of SAB in central Fiji is one of the highest in the world. SAB was associated with significant mortality, especially in those over 60 years of age, despite a relatively low frequency of methicillin resistance. Funding: Supported by the National Health and Medical Research Council (Australia) and the GRAM (Global Research on Antimicrobial Resistance) Project, Oxford University (United Kingdom).

15.
Lancet Reg Health West Pac ; 22: 100433, 2022 May.
Article in English | MEDLINE | ID: mdl-35345391

ABSTRACT

Background: Scabies is an important predisposing factor of impetigo which can lead to serious bacterial complications. Ivermectin-based mass drug administration can substantially reduce scabies and impetigo prevalence in endemic settings, but the impact on serious bacterial complications is not known. Methods: We conducted a before-after trial in the Northern Division of Fiji (population: 131,914) of mass drug administration for scabies control. Prospective surveillance was conducted from 2018 to 2020. Mass drug administration took place in 2019, involving two doses of oral ivermectin or topical permethrin, delivered alongside diethylcarbamazine and albendazole for lymphatic filariasis. The primary outcomes were incidence of hospitalisations with skin and soft tissue infections, and childhood invasive infections and post-streptococcal sequelae. Secondary outcomes included presentations to primary healthcare with skin infections and community prevalence of scabies and impetigo. Findings: The incidence of hospitalisations with skin and soft tissue infections was 17% lower after the intervention compared to baseline (388 vs 467 per 100,000 person-years; incidence rate ratio 0.83, 95% CI, 0.74 to 0.94; P = 0.002). There was no difference in incidence of childhood invasive infections and post-streptococcal sequelae. Incidence of primary healthcare presentations with scabies and skin infections was 21% lower (89.2 vs 108 per 1000 person-years, incidence rate ratio, IRR 0.79, 95% CI, 0.78 to 0.82). Crude community prevalence of scabies declined from 14.2% to 7.7% (cluster-adjusted prevalence 12.5% to 8.9%; prevalence ratio 0.71, 95% CI, 0.28 to 1.17). Cluster-adjusted prevalence of impetigo declined from 15.3% to 6.1% (prevalence ratio 0.4, 95% CI, 0.18 to 0.86). Interpretation: Mass drug administration for scabies control was associated with a substantial reduction in hospitalisations for skin and soft tissue infections. Funding: National Health and Medical Research Council of Australia and Scobie and Claire Mackinnon Trust.

16.
Int J Antimicrob Agents ; 59(4): 106577, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35331908

ABSTRACT

Clonal complex 398 (CC398) livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been reported worldwide in a variety of food-animal species. Although CC398 is synonymous with LA-MRSA, community-associated MRSA (CA-MRSA) variants have emerged, including the Panton-Valentine leukocidin (PVL)-positive ST398-V and ST398 single-locus variant ST1232-V, and the PVL-negative ST398-V clones. Using comparative genomic analysis, we determined whether ten CC398 MRSA bacteraemia episodes recently identified in Australia were due to LA-MRSA or CA-MRSA CC398. Isolates were sourced from the Australian Group on Antimicrobial Resistance S. aureus surveillance programme and episodes occurred across Australia. Whole-genome sequencing (WGS) and phylogenetic comparison of the ten CC398 bacteraemia isolates with previously published CC398 MRSA whole-genome sequences identified that the Australian CC398 isolates were closely related to the human-associated II-GOI clade and the livestock-associated IIa clade. The identified CC398 MRSA clones were: PVL-positive ST1232-V (5C2&5), PVL-negative community-associated ST398-V (5C2&5) and livestock-associated ST398-V (5C2&5). Our findings demonstrate the importance of using WGS and comparing the sequences with international sequences to distinguish between CC398 CA-MRSA and LA-MRSA and to determine the isolates' origin. Furthermore, our findings suggest that CC398 CA-MRSA has become established in the Australian community and that ST398-V (5C2&5) LA-MRSA is now widespread in Australian piggeries. Our study emphasises the need for national One Health antimicrobial resistance surveillance programmes to assist in monitoring the ongoing epidemiology of MRSA and other clinically significant antimicrobial-resistant organisms.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Australia/epidemiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Genomics , Livestock , Phylogeny , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcus aureus/genetics
17.
BMC Public Health ; 21(1): 1731, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556065

ABSTRACT

BACKGROUND: Community-acquired pneumonia is an important cause of morbidity and mortality in adults. Approximately one-third of pneumonia cases can be attributed to the pneumococcus. Pneumococcal conjugate vaccines (PCVs) protect against colonisation with vaccine-type serotypes. The resulting decrease in transmission of vaccine serotypes leads to large indirect effects. There are limited data from developing countries demonstrating the impact of childhood PCV immunisation on adult pneumonia. There are also insufficient data available on the burden and severity of all-cause pneumonia and respiratory syncytial virus (RSV) in adults from low resource countries. There is currently no recommendation for adult pneumococcal vaccination with either pneumococcal polysaccharide vaccine or PCVs in Mongolia. We describe the protocol developed to evaluate the association between childhood 13-valent PCV (PCV13) vaccination and trends in adult pneumonia. METHODS: PCV13 was introduced into the routine childhood immunisation schedule in Mongolia in a phased manner from 2016. In March 2019 we initiated active hospital-based surveillance for adult pneumonia, with the primary objective of evaluating trends in severe hospitalised clinical pneumonia incidence in adults 18 years and older in four districts of Ulaanbaatar. Secondary objectives include measuring the association between PCV13 introduction and trends in all clinically-defined pneumonia, radiologically-confirmed pneumonia, nasopharyngeal carriage of S. pneumoniae and pneumonia associated with RSV or influenza. Clinical questionnaires, nasopharyngeal swabs, urine samples and chest radiographs were collected from enrolled patients. Retrospective administrative and clinical data were collected for all respiratory disease-related admissions from January 2015 to February 2019. DISCUSSION: Establishing a robust adult surveillance system may be an important component of monitoring the indirect impact of PCVs within a country. Monitoring indirect impact of childhood PCV13 vaccination on adult pneumonia provides additional data on the full public health impact of the vaccine, which has implications for vaccine efficiency and cost-effectiveness. Adult surveillance in Mongolia will contribute to the limited evidence available on the burden of pneumococcal pneumonia among adults in low- and middle-income countries, particularly in the Asia-Pacific region. In addition, it is one of the few examples of implementing prospective, population-based pneumonia surveillance to evaluate the indirect impact of PCVs in a resource-limited setting.


Subject(s)
Pneumococcal Infections , Pneumonia, Pneumococcal , Adult , Humans , Mongolia/epidemiology , Observational Studies as Topic , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prospective Studies , Retrospective Studies , Vaccines, Conjugate
18.
JAC Antimicrob Resist ; 3(3): dlab097, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34458731

ABSTRACT

OBJECTIVES: There has been concern that the imperative to administer rapid antimicrobials in septic patients may result in inappropriate antimicrobial use. We aimed to determine the impact of early antimicrobial stewardship (AMS) team intervention in patients with Medical Emergency Team (MET) calls for suspected sepsis. METHODS: We performed a randomized controlled trial of non-ICU inpatients who had a MET call for suspected sepsis. Patients were randomized to standard care (management of antimicrobial therapy by the treating team) or early targeted intervention (AMS review 48 h post-MET call). The primary outcome was appropriateness of antimicrobial therapy 72 h post-MET call, as determined by a panel of blinded infectious diseases physicians. RESULTS: In total, 90 patients were enrolled; 45 were randomly allocated to the intervention group, and 45 to the control group. More patients in the AMS intervention group were receiving appropriate antimicrobials 72 h following the MET call (67% versus 44%, P = 0.03). In the intervention group, 27 recommendations were made by the AMS team; 74% of recommendations were accepted, including 30% of cases where antimicrobials were discontinued or de-escalated. There were non-significant differences in total duration of antimicrobial therapy (8.7 versus 10.7 days, P = 0.39), sepsis-related ICU-admission rates (13% versus 18%, P = 0.56) and sepsis-related in-hospital mortality (7% versus 9%, P = 0.71) between intervention and control groups, respectively. CONCLUSIONS: AMS team intervention resulted in significant improvement in appropriateness of antimicrobial therapy following MET calls due to suspected sepsis. Targeted AMS review should be implemented to support early antimicrobial de-escalation and optimization in patients with suspected sepsis.

19.
BMC Infect Dis ; 21(1): 683, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34261450

ABSTRACT

BACKGROUND: Third-generation cephalosporin-resistant Gram-negatives (3GCR-GN) and vancomycin-resistant enterococci (VRE) are common causes of multi-drug resistant healthcare-associated infections, for which gut colonisation is considered a prerequisite. However, there remains a key knowledge gap about colonisation and infection dynamics in high-risk settings such as the intensive care unit (ICU), thus hampering infection prevention efforts. METHODS: We performed a three-month prospective genomic survey of infecting and gut-colonising 3GCR-GN and VRE among patients admitted to an Australian ICU. Bacteria were isolated from rectal swabs (n = 287 and n = 103 patients ≤2 and > 2 days from admission, respectively) and diagnostic clinical specimens between Dec 2013 and March 2014. Isolates were subjected to Illumina whole-genome sequencing (n = 127 3GCR-GN, n = 41 VRE). Multi-locus sequence types (STs) and antimicrobial resistance determinants were identified from de novo assemblies. Twenty-three isolates were selected for sequencing on the Oxford Nanopore MinION device to generate completed reference genomes (one for each ST isolated from ≥2 patients). Single nucleotide variants (SNVs) were identified by read mapping and variant calling against these references. RESULTS: Among 287 patients screened on admission, 17.4 and 8.4% were colonised by 3GCR-GN and VRE, respectively. Escherichia coli was the most common species (n = 36 episodes, 58.1%) and the most common cause of 3GCR-GN infection. Only two VRE infections were identified. The rate of infection among patients colonised with E. coli was low, but higher than those who were not colonised on admission (n = 2/33, 6% vs n = 4/254, 2%, respectively, p = 0.3). While few patients were colonised with 3GCR- Klebsiella pneumoniae or Pseudomonas aeruginosa on admission (n = 4), all such patients developed infections with the colonising strain. Genomic analyses revealed 10 putative nosocomial transmission clusters (≤20 SNVs for 3GCR-GN, ≤3 SNVs for VRE): four VRE, six 3GCR-GN, with epidemiologically linked clusters accounting for 21 and 6% of episodes, respectively (OR 4.3, p = 0.02). CONCLUSIONS: 3GCR-E. coli and VRE were the most common gut colonisers. E. coli was the most common cause of 3GCR-GN infection, but other 3GCR-GN species showed greater risk for infection in colonised patients. Larger studies are warranted to elucidate the relative risks of different colonisers and guide the use of screening in ICU infection control.


Subject(s)
Cross Infection , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli , Gastrointestinal Tract/microbiology , Infection Control , Intensive Care Units , Vancomycin-Resistant Enterococci , Anti-Bacterial Agents/pharmacology , Australia/epidemiology , Cephalosporin Resistance/genetics , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/prevention & control , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Humans , Infection Control/methods , Infection Control/standards , Intensive Care Units/standards , Intensive Care Units/statistics & numerical data , Prospective Studies , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification
20.
Lancet Reg Health West Pac ; 6: 100053, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34327400

ABSTRACT

BACKGROUND: In 2012, Fiji became the first independent Pacific island country to introduce rotavirus vaccine. We describe the impact of rotavirus vaccine on all-cause diarrhoea admissions in all ages, and rotavirus diarrhoea in children <5 years of age. METHODS: An observational study was conducted retrospectively on all admissions to the public tertiary hospitals in Fiji (2007-2018) and prospectively on all rotavirus-positive diarrhoea admissions in children <5 years at two hospital sites (2006-2018, and 2010-2015), along with rotavirus diarrhoea outpatient presentations at one secondary public hospital (2010-2015). The impact of rotavirus vaccine was determined using incidence rate ratios (IRR) of all-cause diarrhoea admissions and rotavirus diarrhoea, comparing the pre-vaccine and post-vaccine periods. All-cause admissions were used as a control. Multiple imputation was used to impute missing stool samples. FINDINGS: All-cause diarrhoea admissions declined among all age groups except among infants ≤2 months old and adults ≥55 years. For children <5 years, all-cause diarrhoea admissions declined by 39% (IRR)=0•61, 95%CI; 0•57-0•65, p-value<0•001). There was an 81% (95%CI; 51-94%) reduction in mortality among all-cause diarrhoea admissions in children under <5 years. Rotavirus diarrhoea admissions at the largest hospital among children <5 years declined by 87% (IRR=0•13, 95%CI; 0•10-0•17, p-value<0•001). Among rotavirus diarrhoea outpatient presentations, the IRR was 0•39 (95%CI; 0•11, 1.21, p-value=0.077). INTERPRETATIONS: Morbidity and mortality due to rotavirus and all-cause diarrhoea in Fiji has declined in people aged 2 months to 54 years after the introduction of the RV vaccine. FUNDING: Supported by WHO and the Australian Government.

SELECTION OF CITATIONS
SEARCH DETAIL
...