Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Phys Rev Lett ; 132(15): 155102, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683000

ABSTRACT

We present the first experimental study of plasmoid formation in a magnetic reconnection layer undergoing rapid radiative cooling, a regime relevant to extreme astrophysical plasmas. Two exploding aluminum wire arrays, driven by the Z machine, generate a reconnection layer (S_{L}≈120) in which the cooling rate far exceeds the hydrodynamic transit rate (τ_{hydro}/τ_{cool}>100). The reconnection layer generates a transient burst of >1 keV x-ray emission, consistent with the formation and subsequent rapid cooling of the layer. Time-gated x-ray images show fast-moving (up to 50 km s^{-1}) hotspots in the layer, consistent with the presence of plasmoids in 3D resistive magnetohydrodynamic simulations. X-ray spectroscopy shows that these hotspots generate the majority of Al K-shell emission (around 1.6 keV) prior to the onset of cooling, and exhibit temperatures (170 eV) much greater than that of the plasma inflows and the rest of the reconnection layer, thus providing insight into the generation of high-energy radiation in radiatively cooled reconnection events.

2.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37184347

ABSTRACT

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

3.
Phys Rev Lett ; 125(15): 155002, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095639

ABSTRACT

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×10^{13} (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

4.
Rev Sci Instrum ; 88(10): 103503, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092482

ABSTRACT

Many experiments on Sandia National Laboratories' Z Pulsed Power Facility-a 30 MA, 100 ns rise-time, pulsed-power driver-use a monochromatic quartz crystal backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [CR=ri(0)/ri(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co Heα resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.

5.
Phys Rev Lett ; 116(6): 065001, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26918996

ABSTRACT

Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 µm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 µm over the 4.0 mm axial height captured by the radiograph.

6.
Phys Rev Lett ; 113(15): 155003, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375714

ABSTRACT

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 µm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).

7.
Phys Rev Lett ; 113(15): 155004, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375715

ABSTRACT

Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

8.
Rev Sci Instrum ; 85(8): 083501, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173263

ABSTRACT

Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources.

9.
Phys Rev Lett ; 111(23): 235005, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476283

ABSTRACT

Novel experimental data are reported that reveal helical instability formation on imploding z-pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.

10.
Phys Rev Lett ; 109(13): 135004, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23030097

ABSTRACT

The implosions of initially solid beryllium liners (tubes) have been imaged with penetrating radiography through to stagnation. These novel radiographic data reveal a high degree of azimuthal correlation in the evolving magneto-Rayleigh-Taylor structure at times just prior to (and during) stagnation, providing stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities. To emphasize this point, comparisons to 2D and 3D radiation magnetohydrodynamics simulations are also presented. Both agreement and substantial disagreement have been found, depending on how the liner's initial outer surface finish was modeled. The various models tested, and the physical implications of these models are discussed. These comparisons exemplify the importance of the experimental data obtained.

11.
Phys Rev Lett ; 109(15): 155002, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102317

ABSTRACT

Using solid, machined X-pinch targets driven by currents rising from 0 to 5-6 MA in 60 ns, we observed bright spots of 5-9-keV continuum radiation from 5±2-µm diameter regions. The >6-keV radiation is emitted in about 0.4 ns, and the bright spots are roughly 75 times brighter than the bright spots measured at 1 MA. A total x-ray power of 10 TW peak and yields of 165±20 kJ were emitted from a 3-mm height. The 3-5-keV continuum radiation had a 50-90-GW peak power and 0.15-0.35-kJ yield. The continuum is plausibly from a 1275±75-eV blackbody or alternatively from a 3500±500-eV bremsstrahlung source.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056408, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22181529

ABSTRACT

The observation of Doppler splitting in K-shell x-ray lines emitted from optically thin dopants is used to infer implosion velocities of up to 70 cm/µs in wire-array and gas-puff Z pinches at drive currents of 15-20 MA. These data can benchmark numerical implosion models, which produce reasonable agreement with the measured velocity in the emitting region. Doppler splitting is obscured in lines with strong opacity, but red-shifted absorption produced by the cooler halo of material backlit by the hot core assembling on axis can be used to diagnose velocity in the trailing mass.


Subject(s)
Physics/methods , Absorption , Algorithms , Equipment Design , Magnetics , Motion , Spectrophotometry/methods , Time Factors , Water/chemistry , X-Rays
13.
Phys Rev Lett ; 102(2): 025005, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257285

ABSTRACT

X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator.

14.
Phys Rev Lett ; 101(5): 055005, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18764402

ABSTRACT

3D resistive MHD simulations are used to show how the properties of the "fundamental" mode of modulated ablation in wire-array Z pinches, are consistent with the growth of a modified m=0-like instability. The modulation wavelength, structure, and evolution is found to be governed by the magnetic topology and is largely independent of the initial conditions. The perturbation amplitude as a function of wire number is shown to be consistent with experimental x-ray power scaling. Simulations of an array of helical wires show a substantial reduction in the amplitude of the instability.

15.
Phys Rev Lett ; 100(3): 035001, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18232988

ABSTRACT

The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities reaching approximately 18% of the propagation velocity.

16.
Phys Rev Lett ; 98(2): 025003, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17358615

ABSTRACT

Two- and three-dimensional MHD simulations are used to provide a theoretical description of 2 wire molybdenum X-pinch experiments. The initial evolution from solid wires to the formation of supersonic jets and a central micro-Z pinch is found to result from the slow rate of wire ablation and from the distribution of the Lorentz force. The growth of m=0 instabilities triggers the formation of micron sized regions of intense x-ray emission with plasma pressures in the Gbar range. A simple analytical model is used to predict how the maximum density and temperature scale with material and current.

17.
Phys Rev Lett ; 98(6): 065003, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17358953

ABSTRACT

Axial symmetry in x-ray radiation of wire-array z pinches is important for the creation of dynamic hohlraums used to compress inertial-confinement-fusion capsules. We present the first evidence that this symmetry is directly correlated with the magnitude of the negative radial electric field along the wire surface. This field (in turn) is inferred to control the initial energy deposition into the wire cores, as well as any current shorting to the return conductor.

18.
Psychopharmacology (Berl) ; 184(1): 13-20, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16328378

ABSTRACT

RATIONALE: Typical and atypical antipsychotic drugs produce characteristic patterns of immediate early gene expression in rat forebrain that are considered to reflect their effects in schizophrenia subjects. OBJECTIVE: To use c-Fos immunohistochemistry to investigate the functional neuroanatomical profile of the newly introduced atypical agent ziprasidone. MATERIALS AND METHODS: c-Fos immunohistochemistry was performed on paraformaldehyde-fixed cryosections of rat brains obtained, initially, from animals 2, 4, or 6 h after oral administration of 10 mg/kg ziprasidone or vehicle and, subsequently, from animals 2 h after oral administration of 1, 3, or 10 mg/kg ziprasidone or vehicle. The density of immunoreactive nuclei was assessed in pre-determined forebrain regions. RESULTS: Ziprasidone induced a time-dependent increase in the density of c-Fos-positive nuclei that was maximal at 2 h. At the 2 h time-point, c-Fos expression was significantly (p<0.05) elevated in the shell and core of the nucleus accumbens, lateral and medial caudate putamen, and lateral septum. At 4 h post-dose, c-Fos expression was also significantly increased in the cingulate gyrus. Ziprasidone-induced c-Fos expression was dose-dependent with significant (p<0.05) c-Fos expression observed in the nucleus accumbens (shell and core) and caudate putamen (lateral and medial) at 3 and 10 mg/kg and in the lateral septum at 10 mg/kg. CONCLUSIONS: Increased c-Fos expression in the nucleus accumbens and lateral septum is considered to be predictive of activity against positive symptoms, in the caudate putamen of motor side effect liability, and in the cingulate gyrus of efficacy against negative symptoms. Thus, the observed pattern of c-Fos expression induced in rat brain by ziprasidone is consistent with its reported clinical effects, namely, efficacy against positive symptoms with a therapeutic window over motor side effects and with some activity against negative symptoms.


Subject(s)
Antipsychotic Agents/pharmacology , Piperazines/pharmacology , Prosencephalon/drug effects , Proto-Oncogene Proteins c-fos/biosynthesis , Thiazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Immunohistochemistry , Male , Prosencephalon/metabolism , Rats , Time Factors
19.
Neuroscience ; 120(2): 309-24, 2003.
Article in English | MEDLINE | ID: mdl-12890504

ABSTRACT

Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor that shares between 47 and 51% homology with other known bombesin receptors. The natural ligand for BRS-3 is currently unknown and little is known about the mechanisms regulating BRS-3 gene expression. Unlike other mammalian bombesin receptors that have been shown to be predominantly expressed in the CNS and gastrointestinal tract, expression of the BRS-3 receptor in the rat brain has previously not been observed. To gain further understanding of the biology of BRS-3, we have studied the distribution of BRS-3 mRNA and protein in the rat CNS. The mRNA expression pattern was studied using reverse transcription followed by quantitative polymerase chain reaction. Using immunohistological techniques, the distribution of BRS-3 protein in the rat brain was investigated using a rabbit affinity-purified polyclonal antiserum raised against an N-terminal peptide. The BRS-3 receptor was found to be widely expressed in the rat brain at both mRNA and protein levels. Particularly strong immunosignals were observed in the cerebral cortex, hippocampal formation, hypothalamus and thalamus. Other regions of the brain such as the basal ganglia, midbrain and reticular formation were also immunopositive for BRS-3. In conclusion, our neuroanatomical data provide evidence that BRS-3 is as widely expressed in the rat brain as other bombesin-like peptide receptors and suggest that this receptor may also have important roles in the CNS, mediating the functions of a so far unidentified ligand.


Subject(s)
Central Nervous System/metabolism , Receptors, Bombesin/metabolism , Animals , Astrocytoma , Blotting, Western , Cell Line , Central Nervous System/cytology , Embryo, Mammalian , Humans , Immunohistochemistry/methods , Male , Peptide Fragments/immunology , Peptide Fragments/metabolism , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Bombesin/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Transfection/methods
20.
Chest ; 120(1): 309-11, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11451857

ABSTRACT

We present a case of a 69-year-old woman who developed brachial plexopathy and long thoracic nerve palsy secondary to compression from a hematoma while receiving heparin therapy for the treatment of a stroke. The patient was treated conservatively with discontinuation of heparin and had complete resolution of her compressive neuropathy. This is the first report of a patient with long thoracic nerve palsy with a brachial plexopathy complicating anticoagulation. We review the literature on hematoma-induced compressive neuropathies and treatment options. Our review concludes by emphasizing the importance of clinical judgment in determining the best therapeutic modality.


Subject(s)
Anticoagulants/adverse effects , Brachial Plexus Neuropathies/chemically induced , Hematoma/chemically induced , Heparin/adverse effects , Nerve Compression Syndromes/chemically induced , Thoracic Nerves , Aged , Brachial Plexus Neuropathies/diagnosis , Female , Hematoma/complications , Humans , Magnetic Resonance Imaging , Nerve Compression Syndromes/diagnosis , Stroke/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...