Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
PLoS One ; 19(3): e0299934, 2024.
Article in English | MEDLINE | ID: mdl-38466705

ABSTRACT

OBJECTIVE: Depression is an increasingly common mental health disorder in the UK, managed predominantly in the community by GPs. Emerging evidence suggests lifestyle medicine is a key component in the management of depression. We aimed to explore GPs' experiences, attitudes, and challenges to providing lifestyle advice to patients with depression. METHOD: Focus groups were conducted virtually with UK GPs (May-July 2022). A topic guide facilitated the discussion and included questions on experiences, current practices, competence, challenges, and service provision. Data were analysed using template analysis. RESULTS: 'Supporting Effective Conversations'; 'Willing, but Blocked from Establishing Relational Care'; 'Working Towards Patient Empowerment'; and 'Control Over the Prognosis' were all elements of how individualised lifestyle advice was key to the management of depression. Establishing a doctor-patient relationship by building trust and rapport was fundamental to having effective conversations about lifestyle behaviours. Empowering patients to make positive lifestyle changes required tailoring advice using a patient-centred approach. Confidence varied across participants, depending on education, experience, type of patient, and severity of depression. CONCLUSIONS: GPs play an important role in managing depression using lifestyle medicine and a patient-centred approach. Organisational and educational changes are necessary to facilitate GPs in providing optimal care to patients with depression.


Subject(s)
General Practitioners , Humans , General Practitioners/psychology , Focus Groups , Depression/therapy , Physician-Patient Relations , Attitude of Health Personnel , Qualitative Research , Life Style
2.
Proc Natl Acad Sci U S A ; 120(9): e2216430120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802441

ABSTRACT

Monitoring the extracellular environment for danger signals is a critical aspect of cellular survival. However, the danger signals released by dying bacteria and the mechanisms bacteria use for threat assessment remain largely unexplored. Here, we show that lysis of Pseudomonas aeruginosa cells releases polyamines that are subsequently taken up by surviving cells via a mechanism that relies on Gac/Rsm signaling. While intracellular polyamines spike in surviving cells, the duration of this spike varies according to the infection status of the cell. In bacteriophage-infected cells, intracellular polyamines are maintained at high levels, which inhibits replication of the bacteriophage genome. Many bacteriophages package linear DNA genomes and linear DNA is sufficient to trigger intracellular polyamine accumulation, suggesting that linear DNA is sensed as a second danger signal. Collectively, these results demonstrate how polyamines released by dying cells together with linear DNA allow P. aeruginosa to make threat assessments of cellular injury.


Subject(s)
Bacteriophages , Polyamines , Bacteriophages/genetics , Bacteria , Pseudomonas aeruginosa , DNA
3.
Front Cell Infect Microbiol ; 12: 869736, 2022.
Article in English | MEDLINE | ID: mdl-35782109

ABSTRACT

Bacteria in natural environments and infections are often found in cell aggregates suspended in polymer-rich solutions, and aggregation can promote bacterial survival and stress resistance. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and high concentrations of polymers in the environment rather than bacterial activity per se. As such, bacteria aggregated by the depletion mechanism will disperse when polymer concentrations fall unless other adhesion mechanisms supervene. Here we investigated whether the depletion mechanism can actuate the aggregating effects of Pseudomonas aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found that cells overexpressing the exopolysaccharides Pel and Psl remained aggregated after short periods of depletion aggregation whereas wild-type and mucoid P. aeruginosa did not. In co-culture, depletion aggregation had contrasting effects on P. aeruginosa's interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus (cocci) and P. aeruginosa (rods) to segregate from each other and S. aureus to resist secreted P. aeruginosa antimicrobial factors resulting in species co-existence. In contrast, depletion aggregation caused P. aeruginosa and Burkholderia sp. (both rods) to intermix, enhancing type VI secretion inhibition of Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can promote aggregation by some self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.


Subject(s)
Biofilms , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Polymers/metabolism , Polymers/pharmacology , Pseudomonas aeruginosa , Staphylococcus aureus/metabolism
4.
mBio ; 13(1): e0244121, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35038902

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.


Subject(s)
Inovirus , Superinfection , Humans , Pseudomonas aeruginosa/genetics , Bacterial Proteins/metabolism , Inovirus/metabolism , Fimbriae, Bacterial/genetics
5.
Toxicol Appl Pharmacol ; 427: 115652, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34298059

ABSTRACT

Exposure to phosphine (PH3) presents with a host of diverse, non-specific symptoms that span multiple organ systems and is characterized by a high mortality rate. While a comprehensive mechanism for PH3 poisoning remains inconclusive, prior studies have implicated cardiac failure and circulatory compromise as potential pathways central to PH3-induced mortality. In this study, milrinone (MLR), a phosphodiesterase-3 inhibitor used to treat cardiac failure, was investigated as a potential countermeasure for PH3 poisoning. Lethality, physiological responses, and behavioral changes were evaluated in telemetrized female rats pretreated with water (sham) or one of three doses of MLR (40, 200, or 600 µg/kg) and exposed to PH3 (660 ppm for 25-40 min; 16,500-26,400 ppm × min). Animals receiving prophylactic administration of 600 µg/kg of MLR had nominally improved survivability compared to sham animals, although median lethal concentration-time and time of death did not differ substantially between treatment groups. Changes in respiration and behavior induced by PH3 appeared largely unaffected by MLR pretreatment, regardless of dose. Conversely, MLR pretreatment alleviated some aspects of PH3-induced cardiac function impairment, with slight dose-dependent effects observed for cardiac contractility, mean arterial pressure, and QRS duration. Together, these results illustrate the importance of circulatory compromise in PH3 poisoning and highlight the potential viability of MLR as a potential countermeasure option or part of a countermeasure regimen when administered prophylactically at 600 µg/kg.


Subject(s)
Cardiac Output/drug effects , Cardiotonic Agents/administration & dosage , Insecticides/poisoning , Milrinone/administration & dosage , Phosphines/poisoning , Respiratory Mechanics/drug effects , Animals , Cardiac Output/physiology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , Inhalation Exposure/adverse effects , Lethal Dose 50 , Pre-Exposure Prophylaxis/methods , Rats , Rats, Sprague-Dawley , Respiratory Mechanics/physiology , Survival Rate/trends
6.
Nat Commun ; 12(1): 1986, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790266

ABSTRACT

Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.


Subject(s)
Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Escherichia coli Proteins/metabolism , Phosphorus-Oxygen Lyases/metabolism , Pseudomonas aeruginosa/metabolism , Second Messenger Systems/physiology , Signal Transduction/physiology , Algorithms , Bacterial Proteins/genetics , Biofilms/growth & development , Chromatography, Liquid , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Mass Spectrometry , Phosphorus-Oxygen Lyases/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Temperature
7.
Cell Rep ; 34(8): 108782, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33626358

ABSTRACT

In cystic fibrosis (CF) airways, Pseudomonas aeruginosa forms cellular aggregates called biofilms that are thought to contribute to chronic infection. To form aggregates, P. aeruginosa can use different mechanisms, each with its own pathogenic implications. However, how they form in vivo is controversial and unclear. One mechanism involves a bacterially produced extracellular matrix that holds the aggregates together. Pel and Psl exopolysaccharides are structural and protective components of this matrix. We develop an immunohistochemical method to visualize Pel and Psl in CF sputum. We demonstrate that both exopolysaccharides are expressed in the CF airways and that the morphology of aggregates is consistent with an exopolysaccharide-dependent aggregation mechanism. We reason that the cationic exopolysaccharide Pel may interact with some of the abundant anionic host polymers in sputum. We show that Pel binds extracellular DNA (eDNA) and that this interaction likely impacts current therapies by increasing antimicrobial tolerance and protecting eDNA from digestion.


Subject(s)
Cystic Fibrosis/microbiology , Lung/microbiology , Polysaccharides, Bacterial/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Respiratory Tract Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Biofilms/growth & development , Cystic Fibrosis/drug therapy , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Drug Resistance, Bacterial , Expectorants/therapeutic use , Humans , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Respiratory Tract Infections/drug therapy , Sputum/microbiology
8.
ACS Infect Dis ; 7(8): 2238-2249, 2021 08 13.
Article in English | MEDLINE | ID: mdl-33203208

ABSTRACT

The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Epigenesis, Genetic , Escherichia coli , Humans , Ligands , Trypanosoma cruzi/genetics
9.
Toxicol Rep ; 7: 1112-1120, 2020.
Article in English | MEDLINE | ID: mdl-32864344

ABSTRACT

Carfentanil is a powerful synthetic opioid that is approximately 100 times more potent than fentanyl and 10,000 times more potent than morphine. Carfentanil was originally intended to be used as a sedative for big game animals in a veterinary setting, but it is becoming increasingly recognized as a public health concern. We set out to investigate the effectiveness of naloxone against a potentially lethal dose of inhaled carfentanil in male ferrets. Ferrets were implanted with telemetry devices to study cardiac parameters and exposed to aerosolized carfentanil in a whole-body plethysmography chamber to record respiratory parameters. We observed profound respiratory depression in exposed animals, which led to apneic periods constituting 24-31 % of the exposure period. Concomitant with these apneic periods, we also observed cardiac abnormalities in the form of premature junctional contractions (PJCs). At our acute exposure dose, lethal in 3 % of our animals, naïve ferrets were unresponsive and incapacitated for a total of 126.1 ± 24.6 min. When administered intramuscularly at human equivalent doses (HEDs) of either 5 mg or 10 mg, naloxone significantly reduced the time that ferrets were incapacitated following exposure, although we observed no significant difference in the reduction of time that the animals were incapacitated between the treatment groups. Naloxone was able to quickly resolve the respiratory depression, significantly reducing the frequency of apneic periods in carfentanil-exposed ferrets. Our results suggest that naloxone, when administered via intramuscular injection following incapacitation, is a viable treatment against the effects of a potentially lethal dose of inhaled carfentanil.

10.
Nature ; 584(7822): 579-583, 2020 08.
Article in English | MEDLINE | ID: mdl-32760001

ABSTRACT

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Subject(s)
Biodiversity , Classification/methods , Islands , Plants/classification , Geographic Mapping , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Internet , New Guinea , Species Specificity , Time Factors
11.
Ann N Y Acad Sci ; 1479(1): 196-209, 2020 11.
Article in English | MEDLINE | ID: mdl-32285953

ABSTRACT

Fluoroacetate (FA) is a tasteless, odorless, water-soluble metabolic poison with severe toxicological effects. Characterized in the mid-1900s, it has been used as a rodenticide but is comparably lethal to all mammals. Many countries have restricted its use, and modern-day accidental human exposures are rare, but recently, concerns have been raised about its application as a chemical weapon with no known antidote. A combined treatment of methylene blue (MB), an antioxidant, and monosodium glutamate (MSG), a precursor of the citric acid cycle substrate alpha-ketoglutarate, has been recommended as an effective countermeasure; however, no peer-reviewed articles documenting the efficacy of this therapy have been published. Using a rodent model, we assessed the effects of MB and MSG on the neurologic, cardiac, and pulmonary systems. Transcriptomic analysis was used to elucidate inflammatory pathway activation and guide bioassays, which revealed the advantages and disadvantages of these candidate countermeasures. Results show that MB and MSG can reduce neurologic signs observed in rats exposed to sodium FA and improve some effects of intoxication. However, while this strategy resolved some signs of intoxication, ultimately it was unable to significantly reduce lethality.


Subject(s)
Fluoroacetates/poisoning , Methylene Blue/pharmacology , Nervous System , Sodium Glutamate/pharmacology , Animals , Gene Expression Profiling , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lung/metabolism , Lung/pathology , Male , Myocardium/metabolism , Myocardium/pathology , Nervous System/metabolism , Nervous System/pathology , Rats , Rats, Sprague-Dawley
12.
Ann N Y Acad Sci ; 1479(1): 168-179, 2020 11.
Article in English | MEDLINE | ID: mdl-32242940

ABSTRACT

Exposure to phosphine (PH3 ), a common grain fumigant, is characterized by diverse nonspecific symptoms and a high mortality rate. Although PH3 poisoning is thought to target oxidative respiration, the exact mechanism of action remains largely unknown, resulting in limited treatment options. In our study, the effects of PH3 on female rats were assessed to elucidate potential sex-specific differences and obtain a more comprehensive understanding of PH3 toxicity. Lethality, physiology, and behavior were evaluated in female rats exposed to gaseous PH3 (13,200-26,400 ppm × min), and results were compared with corresponding findings in male rats. Median lethal concentration-time (LCt50 ) and time of death (tTOD ) did not differ significantly between the sexes. Cardiopulmonary changes induced by PH3 were also of comparable magnitude, although temporally, respiratory responses occurred earlier and cardiovascular variations manifested later in female rats. Behavioral observations corroborated physiological findings and indicated a response to hypoxic conditions and low cardiac output. Together, these results provided insights on the toxic mechanisms of PH3 , in particular, its potential interference with oxygen transport and circulation.


Subject(s)
Blood Circulation/drug effects , Cardiac Output, Low , Hypoxia , Oxygen/blood , Phosphines/poisoning , Sex Characteristics , Animals , Cardiac Output, Low/blood , Cardiac Output, Low/chemically induced , Cardiac Output, Low/physiopathology , Female , Hypoxia/blood , Hypoxia/chemically induced , Hypoxia/physiopathology , Rats , Rats, Sprague-Dawley
13.
Front Immunol ; 11: 244, 2020.
Article in English | MEDLINE | ID: mdl-32153575

ABSTRACT

Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.


Subject(s)
Bacteriophages/physiology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/physiology , Animals , Biofilms , Chronic Disease , Drug Resistance, Microbial , Humans , Mammals , Pseudomonas Infections/transmission , Pseudomonas Infections/virology , Virulence
14.
Cogent Biol ; 5(1)2019.
Article in English | MEDLINE | ID: mdl-31595219

ABSTRACT

Sodium fluoroacetate (1080) is a highly toxic metabolic poison that has the potential because of its lack of defined color, odor, and taste and its high water solubility to be intentionally or unintentionally ingested through food adulteration. Although the mechanism of action for 1080 has been known since the 1950's, no known antidote exists. In an effort to better understand the cardiopulmonary impacts of 1080, we utilized whole-body plethysmography and telemeterized Sprague-Dawley rats which allowed for the real-time measurement of respiratory and cardiac parameters following exposure using a non-invasive assisted-drinking method. Overall, the animals showed marked depression of respiratory parameters over the course of 24 hours post-exposure and the development of hemorrhage in the lung tissue. Tidal volume was reduced by 30% in males and 60% in females at 24 hours post-exposure, and respiratory frequency was significantly depressed as well. In telemeterized female rats, we observed severe cardiac abnormalities, highlighted by a 50% reduction in heart rate, 75% reduction in systolic blood pressure, and a 3.5-fold lengthening of the QRS interval over the course of 24 hours. We also observed a reduction in core body temperature of nearly 15°C. Our study was able to describe the severe and pronounced effects of sodium fluoroacetate poisoning on cardiopulmonary function, the results of which indicate that both tissue specific and systemic deficits contribute to the toxicological progression of 1080 intoxication and will need to be accounted for when developing any potential countermeasure for 1080 poisoning.

15.
Sci Transl Med ; 11(488)2019 04 17.
Article in English | MEDLINE | ID: mdl-30996083

ABSTRACT

Filamentous bacteriophage (Pf phage) contribute to the virulence of Pseudomonas aeruginosa infections in animal models, but their relevance to human disease is unclear. We sought to interrogate the prevalence and clinical relevance of Pf phage in patients with cystic fibrosis (CF) using sputum samples from two well-characterized patient cohorts. Bacterial genomic analysis in a Danish longitudinal cohort of 34 patients with CF revealed that 26.5% (n = 9) were consistently Pf phage positive. In the second cohort, a prospective cross-sectional cohort of 58 patients with CF at Stanford, sputum qPCR analysis showed that 36.2% (n = 21) of patients were Pf phage positive. In both cohorts, patients positive for Pf phage were older, and in the Stanford CF cohort, patients positive for Pf phage were more likely to have chronic P. aeruginosa infection and had greater declines in pulmonary function during exacerbations than patients negative for Pf phage presence in the sputum. Last, P. aeruginosa strains carrying Pf phage exhibited increased resistance to antipseudomonal antibiotics. Mechanistically, in vitro analysis showed that Pf phage sequesters these same antibiotics, suggesting that this mechanism may thereby contribute to the selection of antibiotic resistance over time. These data provide evidence that Pf phage may contribute to clinical outcomes in P. aeruginosa infection in CF.


Subject(s)
Cystic Fibrosis/microbiology , Lung/microbiology , Pseudomonas/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Drug Resistance, Microbial/genetics , Drug Resistance, Microbial/physiology , Humans , Inovirus , Microbial Sensitivity Tests , Prospective Studies
16.
Dalton Trans ; 47(45): 16145-16154, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30378619

ABSTRACT

A series of four emissive europium complexes has been evaluated for the binding of glyphosate in various aqueous media, including river water and grain extracts. Binding selectivity toward inorganic phosphate and bicarbonate was enhanced by measuring samples at pH 5.9, above the pKa of glyphosate itself. The highest affinity was shown with [Eu·L1], which creates an exocyclic tripicolylamine moiety when one pyridine group dissociates from Eu. Glyphosate was bound selectively over dihydrogenphosphate, glycinate, aminomethylphosphonate and the related herbicide glufosinate. The complex was used to measure glyphosate over the range 5 to 50 µM, in river water and grain extracts.

17.
Proc Natl Acad Sci U S A ; 115(42): 10780-10785, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30275316

ABSTRACT

Bacteria causing chronic infections are generally observed living in cell aggregates suspended in polymer-rich host secretions, and bacterial phenotypes induced by aggregated growth may be key factors in chronic infection pathogenesis. Bacterial aggregation is commonly thought of as a consequence of biofilm formation; however the mechanisms producing aggregation in vivo remain unclear. Here we show that polymers that are abundant at chronic infection sites cause bacteria to aggregate by the depletion aggregation mechanism, which does not require biofilm formation functions. Depletion aggregation is mediated by entropic forces between uncharged or like-charged polymers and particles (e.g., bacteria). Our experiments also indicate that depletion aggregation of bacteria induces marked antibiotic tolerance that was dependent on the SOS response, a stress response activated by genotoxic stress. These findings raise the possibility that targeting conditions that promote depletion aggregation or mechanisms of depletion-mediated tolerance could lead to new therapeutic approaches to combat chronic bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Tolerance , Entropy , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/drug effects , Biofilms , Humans , Microbial Sensitivity Tests , Phenotype , Pseudomonas aeruginosa/isolation & purification
18.
Bioorg Med Chem ; 26(11): 2937-2957, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29776834

ABSTRACT

Ligands for the bromodomain and extra-terminal domain (BET) family of bromodomains have shown promise as useful therapeutic agents for treating a range of cancers and inflammation. Here we report that our previously developed 3,5-dimethylisoxazole-based BET bromodomain ligand (OXFBD02) inhibits interactions of BRD4(1) with the RelA subunit of NF-κB, in addition to histone H4. This ligand shows a promising profile in a screen of the NCI-60 panel but was rapidly metabolised (t½â€¯= 39.8 min). Structure-guided optimisation of compound properties led to the development of the 3-pyridyl-derived OXFBD04. Molecular dynamics simulations assisted our understanding of the role played by an internal hydrogen bond in altering the affinity of this series of molecules for BRD4(1). OXFBD04 shows improved BRD4(1) affinity (IC50 = 166 nM), optimised physicochemical properties (LE = 0.43; LLE = 5.74; SFI = 5.96), and greater metabolic stability (t½â€¯= 388 min).


Subject(s)
Nuclear Proteins/chemistry , Transcription Factors/chemistry , Biological Assay , Blotting, Western , Cell Cycle Proteins , Crystallography, X-Ray , Drug Stability , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Inhibitory Concentration 50 , Ligands , Luciferases/chemistry , MCF-7 Cells , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
19.
ChemMedChem ; 12(3): 271-277, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27996209

ABSTRACT

Alpha-1-acid glycoprotein (α1 -AGP) is an important blood plasma glycoprotein. Following an acute-phase reaction such as stress, inflammation, burn, or infection, the bloodstream concentration of α1 -AGP can increase up to 400 % of its normal concentration. A wide range of drugs is known to bind α1 -AGP. Increased binding of pharmacologically active compounds to α1 -AGP moderates their clinical effect by decreasing the amount of unbound drug in the bloodstream. This has important clinical ramifications for such applications as the duration of anesthesia and in determining dosage for drug therapy. In this study, the competitive binding to α1 -AGP of a dynamically racemic europium(III) complex with seven pharmacologically active drugs absorbing in the range λ 250-290 nm was monitored by following changes in europium total emission and in induced circularly polarized luminescence (CPL). Binding affinities corresponding to Kd values in the range 0.5-100 µm were measured, in good agreement with published data.


Subject(s)
Europium/chemistry , Orosomucoid/metabolism , Circular Dichroism , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Kinetics , Orosomucoid/chemistry , Protein Binding , Spectrophotometry, Ultraviolet
20.
Infect Immun ; 85(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27795361

ABSTRACT

Pseudomonas aeruginosa is an important opportunistic human pathogen that lives in biofilm-like cell aggregates at sites of chronic infection, such as those that occur in the lungs of patients with cystic fibrosis and nonhealing ulcers. During growth in a biofilm, P. aeruginosa dramatically increases the production of filamentous Pf bacteriophage (Pf phage). Previous work indicated that when in vivo Pf phage production was inhibited, P. aeruginosa was less virulent. However, it is not clear how the production of abundant quantities of Pf phage similar to those produced by biofilms under in vitro conditions affects pathogenesis. Here, using a murine pneumonia model, we show that the production of biofilm-relevant amounts of Pf phage prevents the dissemination of P. aeruginosa from the lung. Furthermore, filamentous phage promoted bacterial adhesion to mucin and inhibited bacterial invasion of airway epithelial cultures, suggesting that Pf phage traps P. aeruginosa within the lung. The in vivo production of Pf phage was also associated with reduced lung injury, reduced neutrophil recruitment, and lower cytokine levels. Additionally, when producing Pf phage, P. aeruginosa was less prone to phagocytosis by macrophages than bacteria not producing Pf phage. Collectively, these data suggest that filamentous Pf phage alters the progression of the inflammatory response and promotes phenotypes typically associated with chronic infection.


Subject(s)
Inflammation/microbiology , Inflammation/virology , Inovirus/growth & development , Pseudomonas Infections/microbiology , Pseudomonas Infections/virology , Pseudomonas aeruginosa/virology , Animals , Biofilms/growth & development , Cystic Fibrosis/microbiology , Cystic Fibrosis/virology , Lung/microbiology , Lung/virology , Macrophages/microbiology , Macrophages/virology , Male , Mice , Mice, Inbred C57BL , Phagocytosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...