Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 122(6): 1033-1042, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36566351

ABSTRACT

High-resolution x-ray data are reported for the ordered phases of long-chain di-monounsaturated C22:1 phosphocholine lipid bilayers. Similar to PC lipids that have saturated chains, diC22:1PC has a subgel phase and a gel phase, but dissimilarly, we find no ripple phase. Our quantitative focus is on the structure of the gel phase. We have recorded 17 lamellar orders, indicating a very well-ordered structure. Fitting to a model provides the phases of the orders. The Fourier construction of the electron density profile has two well-defined headgroup peaks and a very sharp and deep methyl trough. The wide-angle scattering exhibits two Bragg rods that provide the area per molecule. They have an intensity pattern quite different than that of lipids with saturated chains. Models of chain packing indicate that ground state chain configurations are tilted primarily toward next nearest neighbors with an angle that is also consistent with the modeling of the electron density profile. Wide-angle modeling also indicates broken mirror symmetry between the monolayers. Our wide-angle results and our electron density profile together leads to the hypothesis that the sn-1 and sn-2 chains have equivalent penetration depths in contrast to the gel phase structure of lipids with saturated hydrocarbon chains.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Lipid Bilayers/chemistry , X-Ray Diffraction , Chemical Phenomena , Phosphatidylcholines/chemistry
2.
Biophys J ; 118(7): 1665-1678, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32145192

ABSTRACT

We have developed a computational method of atomistically refining the structural ensemble of intrinsically disordered peptides (IDPs) facilitated by experimental measurements using circular dichroism spectroscopy (CD). A major challenge surrounding this approach stems from the deconvolution of experimental CD spectra into secondary structure features of the IDP ensemble. Currently available algorithms for CD deconvolution were designed to analyze the spectra of proteins with stable secondary structures. Herein, our work aims to minimize any bias from the peptide deconvolution analysis by implementing a non-negative linear least-squares fitting algorithm in conjunction with a CD reference data set that contains soluble and denatured proteins (SDP48). The non-negative linear least-squares method yields the best results for deconvolution of proteins with higher disordered content than currently available methods, according to a validation analysis of a set of protein spectra with Protein Data Bank entries. We subsequently used this analysis to deconvolute our experimental CD data to refine our computational model of the peptide secondary structure ensemble produced by all-atom molecular dynamics simulations with implicit solvent. We applied this approach to determine the ensemble structures of a set of short IDPs, that mimic the calmodulin binding domain of calcium/calmodulin-dependent protein kinase II and its 1-amino-acid and 3-amino-acid mutants. Our study offers a, to our knowledge, novel way to solve the ensemble secondary structures of IDPs in solution, which is important to advance the understanding of their roles in regulating signaling pathways through the formation of complexes with multiple partners.


Subject(s)
Intrinsically Disordered Proteins , Molecular Dynamics Simulation , Circular Dichroism , Peptides , Protein Conformation , Protein Structure, Secondary , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...