Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neuroimage ; 263: 119624, 2022 11.
Article in English | MEDLINE | ID: mdl-36108798

ABSTRACT

Schizophrenia and states induced by certain psychotomimetic drugs may share some physiological and phenomenological properties, but they differ in fundamental ways: one is a crippling chronic mental disease, while the others are temporary, pharmacologically-induced states presently being explored as treatments for mental illnesses. Building towards a deeper understanding of these different alterations of normal consciousness, here we compare the changes in neural dynamics induced by LSD and ketamine (in healthy volunteers) against those associated with schizophrenia, as observed in resting-state M/EEG recordings. While both conditions exhibit increased neural signal diversity, our findings reveal that this is accompanied by an increased transfer entropy from the front to the back of the brain in schizophrenia, versus an overall reduction under the two drugs. Furthermore, we show that these effects can be reproduced via different alterations of standard Bayesian inference applied on a computational model based on the predictive processing framework. In particular, the effects observed under the drugs are modelled as a reduction of the precision of the priors, while the effects of schizophrenia correspond to an increased precision of sensory information. These findings shed new light on the similarities and differences between schizophrenia and two psychotomimetic drug states, and have potential implications for the study of consciousness and future mental health treatments.


Subject(s)
Hallucinogens , Ketamine , Schizophrenia , Humans , Hallucinogens/pharmacology , Schizophrenia/drug therapy , Bayes Theorem , Brain/physiology , Ketamine/pharmacology
2.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20210246, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35599558

ABSTRACT

Emergence is a profound subject that straddles many scientific disciplines, including the formation of galaxies and how consciousness arises from the collective activity of neurons. Despite the broad interest that exists on this concept, the study of emergence has suffered from a lack of formalisms that could be used to guide discussions and advance theories. Here, we summarize, elaborate on, and extend a recent formal theory of causal emergence based on information decomposition, which is quantifiable and amenable to empirical testing. This theory relates emergence with information about a system's temporal evolution that cannot be obtained from the parts of the system separately. This article provides an accessible but rigorous introduction to the framework, discussing the merits of the approach in various scenarios of interest. We also discuss several interpretation issues and potential misunderstandings, while highlighting the distinctive benefits of this formalism. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.


Subject(s)
Consciousness , Models, Theoretical , Neurons , Causality , Consciousness/physiology , Neurons/physiology
3.
PLoS Comput Biol ; 16(12): e1008289, 2020 12.
Article in English | MEDLINE | ID: mdl-33347467

ABSTRACT

The broad concept of emergence is instrumental in various of the most challenging open scientific questions-yet, few quantitative theories of what constitutes emergent phenomena have been proposed. This article introduces a formal theory of causal emergence in multivariate systems, which studies the relationship between the dynamics of parts of a system and macroscopic features of interest. Our theory provides a quantitative definition of downward causation, and introduces a complementary modality of emergent behaviour-which we refer to as causal decoupling. Moreover, the theory allows practical criteria that can be efficiently calculated in large systems, making our framework applicable in a range of scenarios of practical interest. We illustrate our findings in a number of case studies, including Conway's Game of Life, Reynolds' flocking model, and neural activity as measured by electrocorticography.


Subject(s)
Computer Simulation , Information Theory , Models, Biological , Animals , Behavior, Animal , Birds , Causality , Computational Biology , Haplorhini , Humans , Models, Statistical , Multivariate Analysis , Neurophysiology
4.
Phys Rev E ; 100(3-1): 032305, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31640038

ABSTRACT

This paper introduces a model-agnostic approach to study statistical synergy, a form of emergence in which patterns at large scales are not traceable from lower scales. Our framework leverages various multivariate extensions of Shannon's mutual information, and introduces the O-information as a metric that is capable of characterizing synergy- and redundancy-dominated systems. The O-information is a symmetric quantity, and can assess intrinsic properties of a system without dividing its parts into "predictors" and "targets." We develop key analytical properties of the O-information, and study how it relates to other metrics of high-order interactions from the statistical mechanics and neuroscience literature. Finally, as a proof of concept, we present an exploration on the relevance of statistical synergy in Baroque music scores.

5.
Front Psychol ; 9: 1341, 2018.
Article in English | MEDLINE | ID: mdl-30319469

ABSTRACT

The recent re-introduction of improvisation as a professional practice within classical music, however cautious and still rare, allows direct and detailed contemporary comparison between improvised and "standard" approaches to performances of the same composition, comparisons which hitherto could only be inferred from impressionistic historical accounts. This study takes an interdisciplinary multi-method approach to discovering the contrasting nature and effects of prepared and improvised approaches during live chamber-music concert performances of a movement from Franz Schubert's "Shepherd on the Rock," given by a professional trio consisting of voice, flute, and piano, in the presence of an invited audience of 22 adults with varying levels of musical experience and training. The improvised performances were found to differ systematically from prepared performances in their timing, dynamic, and timbral features as well as in the degree of risk-taking and "mind reading" between performers, which included moments of spontaneously exchanging extemporized notes. Post-performance critical reflection by the performers characterized distinct mental states underlying the two modes of performance. The amount of overall body movements was reduced in the improvised performances, which showed less unco-ordinated movements between performers when compared to the prepared performance. Audience members, who were told only that the two performances would be different, but not how, rated the improvised version as more emotionally compelling and musically convincing than the prepared version. The size of this effect was not affected by whether or not the audience could see the performers, or by levels of musical training. EEG measurements from 19 scalp locations showed higher levels of Lempel-Ziv complexity (associated with awareness and alertness) in the improvised version in both performers and audience. Results are discussed in terms of their potential support for an "improvisatory state of mind" which may have aspects of flow (as characterized by Csikszentmihalyi, 1997) and primary states (as characterized by the Entropic Brain Hypothesis of Carhart-Harris et al., 2014). In a group setting, such as a live concert, our evidence suggests that this state of mind is communicable between performers and audience thus contributing to a heightened quality of shared experience.

6.
Entropy (Basel) ; 20(10)2018 Oct 16.
Article in English | MEDLINE | ID: mdl-33265882

ABSTRACT

Self-organisation lies at the core of fundamental but still unresolved scientific questions, and holds the promise of de-centralised paradigms crucial for future technological developments. While self-organising processes have been traditionally explained by the tendency of dynamical systems to evolve towards specific configurations, or attractors, we see self-organisation as a consequence of the interdependencies that those attractors induce. Building on this intuition, in this work we develop a theoretical framework for understanding and quantifying self-organisation based on coupled dynamical systems and multivariate information theory. We propose a metric of global structural strength that identifies when self-organisation appears, and a multi-layered decomposition that explains the emergent structure in terms of redundant and synergistic interdependencies. We illustrate our framework on elementary cellular automata, showing how it can detect and characterise the emergence of complex structures.

7.
PLoS One ; 10(8): e0135250, 2015.
Article in English | MEDLINE | ID: mdl-26295948

ABSTRACT

Nowadays the challenge for humanity is to find pathways towards sustainable development. Decision makers require a set of sustainability indicators to know if the sustainability strategies are following those pathways. There are more than one hundred sustainability indicators but they differ on their relative importance according to the size of the locality and change on time. The resources needed to follow these sustainability indicators are scarce and in some instances finite, especially in smaller regions. Therefore strategies to select set of these indicators are useful for decision makers responsible for monitoring sustainability. In this paper we propose a model for the identification and selection of a set of sustainability indicators that adequately represents human systems. In developing this model, we applied evolutionary dynamics in a space where sustainability indicators are fundamental entities interconnected by an interaction matrix. we used a fixed interaction that simulates the current context for the city of Cuernavaca, México as an example. We were able to identify and define relevant sets indicators for the system by using the Pareto principle. In this case we identified a set of sixteen sustainability indicators with more than 80% of the total strength. This set presents resilience to perturbations. For the Tangled Nature framework we provided a manner of treating different contexts (i.e., cities, counties, states, regions, countries, continents or the whole planet), dealing with small dimensions. This model provides decision makers with a valuable tool to select sustainability indicators set for towns, cities, regions, countries, continents or the entire planet according to a coevolutionary framework. The social legitimacy can arise from the fact that each individual indicator must be selected from those that are most important for the subject community.


Subject(s)
Conservation of Natural Resources/statistics & numerical data , Models, Statistical , Cities/economics , Conservation of Natural Resources/economics , Humans , Mexico
9.
Proc Math Phys Eng Sci ; 470(2171): 20140370, 2014 Nov 08.
Article in English | MEDLINE | ID: mdl-25383025

ABSTRACT

Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish 'too big to fail' entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems.

10.
Sci Rep ; 3: 1798, 2013.
Article in English | MEDLINE | ID: mdl-23660823

ABSTRACT

Understanding the relation between patterns of human mobility and the scaling of dynamical features of urban environments is a great importance for today's society. Although recent advancements have shed light on the characteristics of individual mobility, the role and importance of emerging human collective phenomena across time and space are still unclear. In this Article, we show by using two independent data-analysis techniques that the traffic in London is a combination of intertwined clusters, spanning the whole city and effectively behaving as a single correlated unit. This is due to algebraically decaying spatio-temporal correlations, that are akin to those shown by systems near a critical point. We describe these correlations in terms of Taylor's law for fluctuations and interpret them as the emerging result of an underlying spatial synchronisation. Finally, our results provide the first evidence for a large-scale spatial human system reaching a self-organized critical state.

11.
PLoS One ; 5(3): e9621, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20300174

ABSTRACT

The success of social animals (including ourselves) can be attributed to efficiencies that arise from a division of labour. Many animal societies have a communal nest which certain individuals must leave to perform external tasks, for example foraging or patrolling. Staying at home to care for young or leaving to find food is one of the most fundamental divisions of labour. It is also often a choice between safety and danger. Here we explore the regulation of departures from ant nests. We consider the extreme situation in which no one returns and show experimentally that exiting decisions seem to be governed by fluctuating record signals and ant-ant interactions. A record signal is a new 'high water mark' in the history of a system. An ant exiting the nest only when the record signal reaches a level it has never perceived before could be a very effective mechanism to postpone, until the last possible moment, a potentially fatal decision. We also show that record dynamics may be involved in first exits by individually tagged ants even when their nest mates are allowed to re-enter the nest. So record dynamics may play a role in allocating individuals to tasks, both in emergencies and in everyday life. The dynamics of several complex but purely physical systems are also based on record signals but this is the first time they have been experimentally shown in a biological system.


Subject(s)
Ants/physiology , Behavior, Animal/physiology , Decision Making , Animals , Biology/methods , Computer Simulation , Models, Statistical , Poisson Distribution , Social Behavior , Time Factors
12.
J Theor Biol ; 216(1): 73-84, 2002 May 07.
Article in English | MEDLINE | ID: mdl-12076129

ABSTRACT

We discuss a simple model of co-evolution. In order to emphasize the effect of interaction between individuals, the entire population is subjected to the same physical environment. Species are emergent structures and extinction, origination and diversity are entirely a consequence of co-evolutionary interaction between individuals. For comparison, we consider both asexual and sexually reproducing populations. In either case, the system evolves through periods of hectic reorganization separated by periods of coherent stable coexistence.


Subject(s)
Biological Evolution , Ecosystem , Animals , Models, Biological
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(2 Pt 1): 021903, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11863559

ABSTRACT

Fungal colonies are able to exhibit different morphologies depending on the environmental conditions. This allows them to cope with and adapt to external changes. When grown in solid or semisolid media the bulk of the colony is compact and several morphological transitions have been reported to occur as the external conditions are varied. Here we show how a unified simple mathematical model, which includes the effect of the accumulation of toxic metabolites, can account for the morphological changes observed. Our numerical results are in excellent agreement with experiments carried out with the fungus Aspergillus oryzae on solid agar.


Subject(s)
Fungi/growth & development , Models, Biological , Aspergillus oryzae/cytology , Aspergillus oryzae/growth & development , Aspergillus oryzae/metabolism , Biophysical Phenomena , Biophysics , Cell Adhesion , Fungi/cytology , Fungi/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...