Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166963, 2024 02.
Article in English | MEDLINE | ID: mdl-37989423

ABSTRACT

Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, however, the involvement of the choroid in disease progression is not fully understood. CHM is caused by mutations in the CHM gene, encoding the ubiquitously expressed Rab escort protein 1 (REP1). REP1 plays an important role in intracellular trafficking of vesicles, including melanosomes. In this study, we examined the ultrastructure of the choroid in chmru848 fish and Chmnull/WT mouse models using transmission electron and confocal microscopy. Significant pigmentary disruptions were observed, with lack of melanosomes in the choroid of chmru848 fish from 4 days post fertilisation (4dpf), and a reduction in choroidal blood vessel diameter and interstitial pillars suggesting a defect in vasculogenesis. Total melanin and expression of melanogenesis genes tyr, tryp1a, mitf, dct and pmel were also reduced from 4dpf. In Chmnull/WT mice, choroidal melanosomes were significantly smaller at 1 month, with reduced eumelanin at 1 year. The choroid in CHM patients were also examined using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) and the area of preserved choriocapillaris (CC) was found to be smaller than that of overlying photoreceptors, suggesting that the choroid is degenerating at a faster rate. Histopathology of an enucleated eye from a 74-year-old CHM male patient revealed isolated areas of RPE but no associated underlying CC. Pigmentary disruptions in CHM animal models reveal an important role for REP1 in melanogenesis, and drugs that improve melanin production represent a potential novel therapeutic avenue.


Subject(s)
Choroideremia , Aged , Animals , Humans , Male , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Choroid/metabolism , Choroideremia/genetics , Choroideremia/pathology , Choroideremia/therapy , Melanins , Melanogenesis , Mice, Knockout
2.
Open Res Eur ; 3: 88, 2023.
Article in English | MEDLINE | ID: mdl-37981907

ABSTRACT

Background: Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. Methods: Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Results: Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. Conclusions: Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.


The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

3.
Adv Drug Deliv Rev ; 201: 115084, 2023 10.
Article in English | MEDLINE | ID: mdl-37689278

ABSTRACT

Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.


Subject(s)
Corneal Neovascularization , Molecular Medicine , Animals , Neovascularization, Pathologic/drug therapy , Corneal Neovascularization/drug therapy , Corneal Neovascularization/pathology , Retina/pathology , Angiogenesis Inhibitors/therapeutic use
4.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37591843

ABSTRACT

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Subject(s)
Fibroblast Growth Factor 2 , Vascular Endothelial Growth Factor B , Humans , Fibroblast Growth Factor 2/genetics , Immunotherapy , Receptor, Fibroblast Growth Factor, Type 1/genetics
5.
Adv Sci (Weinh) ; 10(24): e2301505, 2023 08.
Article in English | MEDLINE | ID: mdl-37330661

ABSTRACT

The circadian clock in animals and humans plays crucial roles in multiple physiological processes. Disruption of circadian homeostasis causes detrimental effects. Here, it is demonstrated that the disruption of the circadian rhythm by genetic deletion of mouse brain and muscle ARNT-like 1 (Bmal1) gene, coding for the key clock transcription factor, augments an exacerbated fibrotic phenotype in various tumors. Accretion of cancer-associated fibroblasts (CAFs), especially the alpha smooth muscle actin positive myoCAFs, accelerates tumor growth rates and metastatic potentials. Mechanistically, deletion of Bmal1 abrogates expression of its transcriptionally targeted plasminogen activator inhibitor-1 (PAI-1). Consequently, decreased levels of PAI-1 in the tumor microenvironment instigate plasmin activation through upregulation of tissue plasminogen activator and urokinase plasminogen activator. The activated plasmin converts latent TGF-ß into its activated form, which potently induces tumor fibrosis and the transition of CAFs into myoCAFs, the latter promoting cancer metastasis. Pharmacological inhibition of the TGF-ß signaling largely ablates the metastatic potentials of colorectal cancer, pancreatic ductal adenocarcinoma, and hepatocellular carcinoma. Together, these data provide novel mechanistic insights into disruption of the circadian clock in tumor growth and metastasis. It is reasonably speculated that normalization of the circadian rhythm in patients provides a novel paradigm for cancer therapy.


Subject(s)
Liver Neoplasms , Transforming Growth Factor beta , Mice , Humans , Animals , Transforming Growth Factor beta/metabolism , Tissue Plasminogen Activator/metabolism , Fibrinolysin/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Muscles , Brain/metabolism , Tumor Microenvironment
6.
Mol Cancer Ther ; 22(8): 947-961, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37216282

ABSTRACT

p53 mutation is common and highly related to radiotherapy resistance in rectal cancer. APR-246, as a small molecule, can restore the tumor-suppressor function to mutant p53. As there is currently no existing study on combining APR-246 with radiation in rectal cancer, our objective was to investigate whether APR-246 could enhance the sensitivity of colorectal cancer cells, regardless of their p53 status, to radiation treatment. The combination treatment had synergistic effects on HCT116p53-R248W/- (p53Mut) cells, followed by HCT116p53+/+ [wild-type p53 (p53WT)] cells, and exhibited an additive effect on HCT116p53-/- (p53Null) cells through inhibiting proliferation, enhancing reactive oxygen species, and apoptosis. The results were confirmed in zebrafish xenografts. Mechanistically, p53Mut and p53WT cells shared more activated pathways and differentially expressed genes following the combination treatment, compared with p53Null cells, although the combination treatment regulated individual pathways in the different cell lines. APR-246 mediated radiosensitization effects through p53-dependent and -independent ways. The results may provide evidence for a clinical trial of the combination in patients with rectal cancer.


Subject(s)
Colorectal Neoplasms , Rectal Neoplasms , Animals , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zebrafish/metabolism , Apoptosis/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Rectal Neoplasms/genetics , Rectal Neoplasms/radiotherapy , Cell Line, Tumor
7.
Cells ; 12(3)2023 02 03.
Article in English | MEDLINE | ID: mdl-36766850

ABSTRACT

BACKGROUND: Bacillus Calmette-Guérin (BCG) immunotherapy is the standard-of-care adjuvant therapy for non-muscle-invasive bladder cancer in patients at considerable risk of disease recurrence. Although its exact mechanism of action is unknown, BCG significantly reduces this risk in responding patients but is mainly associated with toxic side-effects in those facing treatment resistance. Methods that allow the identification of BCG responders are, therefore, urgently needed. METHODS: Fluorescently labelled UM-UC-3 cells and dissociated patient tumor samples were used to establish zebrafish tumor xenograft (ZTX) models. Changes in the relative primary tumor size and cell dissemination to the tail were evaluated via fluorescence microscopy at three days post-implantation. The data were compared to the treatment outcomes of the corresponding patients. Toxicity was evaluated based on gross morphological evaluation of the treated zebrafish larvae. RESULTS: BCG-induced toxicity was avoided by removing the water-soluble fraction of the BCG formulation prior to use. BCG treatment via co-injection with the tumor cells resulted in significant and dose-dependent primary tumor size regression. Heat-inactivation of BCG decreased this effect, while intravenous BCG injections were ineffective. ZTX models were successfully established for six of six patients based on TUR-B biopsies. In two of these models, significant tumor regression was observed, which, in both cases, corresponded to the treatment response in the patients. CONCLUSIONS: The observed BCG-related anti-tumor effect indicates that ZTX models might predict the BCG response and thereby improve treatment planning. More experiments and clinical studies are needed, however, to elucidate the BCG mechanism and estimate the predictive value.


Subject(s)
Urinary Bladder Neoplasms , Zebrafish , Animals , Humans , BCG Vaccine/pharmacology , BCG Vaccine/therapeutic use , Heterografts , Neoplasm Recurrence, Local/pathology , Urinary Bladder Neoplasms/pathology
8.
Sci Transl Med ; 14(673): eabn9061, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36449600

ABSTRACT

Chemotherapy-induced thrombocytopenia (CIT) is a severe complication in patients with cancer that can lead to impaired therapeutic outcome and survival. Clinically, therapeutic options for CIT are limited by severe adverse effects and high economic burdens. Here, we demonstrate that ketogenic diets alleviate CIT in both animals and humans without causing thrombocytosis. Mechanistically, ketogenic diet-induced circulating ß-hydroxybutyrate (ß-OHB) increased histone H3 acetylation in bone marrow megakaryocytes. Gain- and loss-of-function experiments revealed a distinct role of 3-ß-hydroxybutyrate dehydrogenase (BDH)-mediated ketone body metabolism in promoting histone acetylation, which promoted the transcription of platelet biogenesis genes and induced thrombocytopoiesis. Genetic depletion of the megakaryocyte-specific ketone body transporter monocarboxylate transporter 1 (MCT1) or pharmacological targeting of MCT1 blocked ß-OHB-induced thrombocytopoiesis in mice. A ketogenesis-promoting diet alleviated CIT in mouse models. Moreover, a ketogenic diet modestly increased platelet counts without causing thrombocytosis in healthy volunteers, and a ketogenic lifestyle inversely correlated with CIT in patients with cancer. Together, we provide mechanistic insights into a ketone body-MCT1-BDH-histone acetylation-platelet biogenesis axis in megakaryocytes and propose a nontoxic, low-cost dietary intervention for combating CIT.


Subject(s)
Antineoplastic Agents , Thrombocytopenia , Thrombocytosis , Humans , Mice , Animals , Megakaryocytes , Acetylation , Histones , Thrombocytopenia/chemically induced , Ketone Bodies , Diet , 3-Hydroxybutyric Acid
9.
Front Neurosci ; 16: 945784, 2022.
Article in English | MEDLINE | ID: mdl-36213755

ABSTRACT

Background: Sleep disruption is known to be highly prevalent in cancer patients, aggravated during oncological treatment and closely associated with reduced quality of life, therapeutic outcome and survival. Inflammatory factors are associated with sleep disruption in healthy individuals and cancer patients, but heterogeneity and robustness of inflammatory factors associated with sleep disruption and how these are affected by oncological therapy remain poorly understood. Furthermore, due to the complex crosstalk between sleep-, and therapy-associated factors, including inflammatory factors, there are currently no established biomarkers for predicting sleep disruption in patients undergoing oncological therapy. Methods: We performed a broad screen of circulating biomarkers with immune-modulating or endocrine functions and coupled these to self-reported sleep quality using the Medical Outcomes Study (MOS) sleep scale. Ninety cancer patients with gastrointestinal, urothelial, breast, brain and tonsillar cancers, aged between 32 and 86 years, and scheduled for adjuvant or palliative oncological therapy were included. Of these, 71 patients were evaluable. Data was collected immediately before and again 3 months after onset of oncological therapy. Results: Seventeen among a total of 45 investigated plasma proteins were found to be suppressed in cancer patients exhibiting sleep disruption prior to treatment onset, but this association was lost following the first treatment cycle. Patients whose sleep quality was reduced during the treatment period exhibited significantly increased plasma levels of six pro-inflammatory biomarkers (IL-2, IL-6, IL-12, TNF-a, IFN-g, and GM-CSF) 3 months after the start of treatment, whereas biomarkers with anti-inflammatory, growth factor, immune-modulatory, or chemokine functions were unchanged. Conclusion: Our work suggests that biomarkers of sleep quality are not valid for cancer patients undergoing oncological therapy if analyzed only at a single timepoint. On the other hand, therapy-associated increases in circulating inflammatory biomarkers are closely coupled to reduced sleep quality in cancer patients. These findings indicate a need for testing of inflammatory and other biomarkers as well as sleep quality at multiple times during the patient treatment and care process.

10.
Cancers (Basel) ; 14(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35159049

ABSTRACT

Metastatic uveal melanoma (MUM) is characterized by poor patient survival. Unfortunately, current treatment options demonstrate limited benefits. In this study, we evaluate the efficacy of ACY-1215, a histone deacetylase inhibitor (HDACi), to attenuate growth of primary ocular UM cell lines and, in particular, a liver MUM cell line in vitro and in vivo, and elucidate the underlying molecular mechanisms. A significant (p = 0.0001) dose-dependent reduction in surviving clones of the primary ocular UM cells, Mel270, was observed upon treatment with increasing doses of ACY-1215. Treatment of OMM2.5 MUM cells with ACY-1215 resulted in a significant (p = 0.0001), dose-dependent reduction in cell survival and proliferation in vitro, and in vivo attenuation of primary OMM2.5 xenografts in zebrafish larvae. Furthermore, flow cytometry revealed that ACY-1215 significantly arrested the OMM2.5 cell cycle in S phase (p = 0.0001) following 24 h of treatment, and significant apoptosis was triggered in a time- and dose-dependent manner (p < 0.0001). Additionally, ACY-1215 treatment resulted in a significant reduction in OMM2.5 p-ERK expression levels. Through proteome profiling, the attenuation of the microphthalmia-associated transcription factor (MITF) signaling pathway was linked to the observed anti-cancer effects of ACY-1215. In agreement, pharmacological inhibition of MITF signaling with ML329 significantly reduced OMM2.5 cell survival and viability in vitro (p = 0.0001) and reduced OMM2.5 cells in vivo (p = 0.0006). Our findings provide evidence that ACY-1215 and ML329 are efficacious against growth and survival of OMM2.5 MUM cells.

11.
J Exp Clin Cancer Res ; 41(1): 58, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35139880

ABSTRACT

BACKGROUND: Accurate predictions of tumor dissemination risks and medical treatment outcomes are critical to personalize therapy. Patient-derived xenograft (PDX) models in mice have demonstrated high accuracy in predicting therapeutic outcomes, but methods for predicting tumor invasiveness and early stages of vascular/lymphatic dissemination are still lacking. Here we show that a zebrafish tumor xenograft (ZTX) platform based on implantation of PDX tissue fragments recapitulate both treatment outcome and tumor invasiveness/dissemination in patients, within an assay time of only 3 days. METHODS: Using a panel of 39 non-small cell lung cancer PDX models, we developed a combined mouse-zebrafish PDX platform based on direct implantation of cryopreserved PDX tissue fragments into zebrafish embryos, without the need for pre-culturing or expansion. Clinical proof-of-principle was established by direct implantation of tumor samples from four patients. RESULTS: The resulting ZTX models responded to Erlotinib and Paclitaxel, with similar potency as in mouse-PDX models and the patients themselves, and resistant tumors similarly failed to respond to these drugs in the ZTX system. Drug response was coupled to elevated expression of EGFR, Mdm2, Ptch1 and Tsc1 (Erlotinib), or Nras and Ptch1 (Paclitaxel) and reduced expression of Egfr, Erbb2 and Foxa (Paclitaxel). Importantly, ZTX models retained the invasive phenotypes of the tumors and predicted lymph node involvement of the patients with 91% sensitivity and 62% specificity, which was superior to clinically used tests. The biopsies from all four patient tested implanted successfully, and treatment outcome and dissemination were quantified for all patients in only 3 days. CONCLUSIONS: We conclude that the ZTX platform provide a fast, accurate, and clinically relevant system for evaluation of treatment outcome and invasion/dissemination of PDX models, providing an attractive platform for combined mouse-zebrafish PDX trials and personalized medicine.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lymph Nodes/pathology , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Disease Models, Animal , Humans , Lung Neoplasms/pathology , Neoplasm Metastasis , Treatment Outcome , Xenograft Model Antitumor Assays , Zebrafish
12.
Cancer Metastasis Rev ; 40(4): 1055-1071, 2021 12.
Article in English | MEDLINE | ID: mdl-34958429

ABSTRACT

Sleep is a basic need that is frequently set aside in modern societies. This leads to profound but complex physiological maladaptations in the body commonly referred to as circadian disruption, which recently has been characterized as a carcinogenic factor and reason for poor treatment outcomes, shortened survival, and reduced quality of life in cancer patients. As sleep and circadian physiology in cancer patients spans several disciplines including nursing science, neurology, oncology, molecular biology and medical technology, there is a lack of comprehensive and integrated approaches to deal with this serious and growing issue and at best a fractionated understanding of only part of the problem among researchers within each of these segments. Here, we take a multidisciplinary approach to comprehensively review the diagnosis and impact of sleep and circadian disruption in cancer patients. We discuss recent discoveries on molecular regulation of the circadian clock in healthy and malignant cells, the neurological and endocrine pathways controlling sleep and circadian rhythmicity, and their inputs to and outputs from the organism. The benefits and drawbacks of the various technologies, devices, and instruments used to assess sleep and circadian function, as well as the known consequences of sleep disruption and how sleep can be corrected in cancer patients, will be analyzed. We will throughout the review highlight the extensive crosstalk between sleep, circadian rhythms, and metabolic pathways involved in malignancy and identify current knowledge gaps and barriers for addressing the issue of sleep and circadian disruption in cancer patients. By addressing these issues, we hope to provide a foundation for further research as well as better and more effective care for the patients in the future.


Subject(s)
Circadian Clocks , Neoplasms , Circadian Clocks/physiology , Circadian Rhythm/physiology , Humans , Quality of Life , Sleep/physiology
13.
Microorganisms ; 9(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34683450

ABSTRACT

The influence of the naturally occurring population of microbes on various human diseases has been a topic of much recent interest. Not surprisingly, continuously growing attention is devoted to the existence of a gut brain axis, where the microbiota present in the gut can affect the nervous system through the release of metabolites, stimulation of the immune system, changing the permeability of the blood-brain barrier or activating the vagus nerves. Many of the methods that stimulate the nervous system can also lead to the development of cancer by manipulating pathways associated with the hallmarks of cancer. Moreover, neurogenesis or the creation of new nervous tissue, is associated with the development and progression of cancer in a similar manner as the blood and lymphatic systems. Finally, microbes can secrete neurotransmitters, which can stimulate cancer growth and development. In this review we discuss the latest evidence that support the importance of microbiota and peripheral nerves in cancer development and dissemination.

14.
Biomolecules ; 11(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34572552

ABSTRACT

Dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been widely reported to show tumor cell selectivity. These compounds target the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. The induction of oxidative stress, depletion of glutathione, and induction of high-molecular-weight (HMW) complexes have also been reported. We here examined the response of acute myeloid leukemia (AML) cells to the dienone compound VLX1570. AML cells have relatively high protein turnover rates and have also been reported to be sensitive to depletion of reduced glutathione. We found AML cells of diverse cytogenetic backgrounds to be sensitive to VLX1570, with drug exposure resulting in an accumulation of ubiquitin complexes, induction of ER stress, and the loss of cell viability in a dose-dependent manner. Caspase activation was observed but was not required for the loss of cell viability. Glutathione depletion was also observed but did not correlate to VLX1570 sensitivity. Formation of HMW complexes occurred at higher concentrations of VLX1570 than those required for the loss of cell viability and was not enhanced by glutathione depletion. To study the effect of VLX1570 we developed a zebrafish PDX model of AML and confirmed antigrowth activity in vivo. Our results show that VLX1570 induces UPS inhibition in AML cells and encourage further work in developing compounds useful for cancer therapeutics.


Subject(s)
Azepines/pharmacology , Benzylidene Compounds/pharmacology , Leukemia, Myeloid, Acute/pathology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/antagonists & inhibitors , Animals , Azepines/chemistry , Benzylidene Compounds/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/pharmacology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Endoplasmic Reticulum Stress/drug effects , Glutathione/metabolism , Heme Oxygenase-1/metabolism , Humans , Molecular Weight , Polyubiquitin/metabolism , Time Factors , Ubiquitin/metabolism , Ubiquitination/drug effects , Zebrafish/embryology
15.
Cancer Res ; 81(21): 5506-5522, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34535458

ABSTRACT

High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a prometastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKCα pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacologic blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a platelet-adoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKCα pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis. SIGNIFICANCE: This study provides mechanistic insights into a glucose-megakaryocyte-platelet axis that promotes metastasis and proposes an antimetastatic therapeutic approach by targeting the mitochondrial protein GRP75.


Subject(s)
Blood Platelets/pathology , Fibrosarcoma/pathology , Glucose/toxicity , Hyperglycemia/physiopathology , Lung Neoplasms/secondary , Megakaryocytes/pathology , Melanoma, Experimental/pathology , Animals , Apoptosis , Blood Platelets/metabolism , Cell Proliferation , Fibrosarcoma/etiology , Fibrosarcoma/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Hyperglycemia/chemically induced , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Male , Melanoma, Experimental/etiology , Melanoma, Experimental/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Sweetening Agents/toxicity , Tumor Cells, Cultured
16.
Cancers (Basel) ; 12(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066024

ABSTRACT

Metastatic uveal melanoma (UM) is a rare, but often lethal, form of ocular cancer arising from melanocytes within the uveal tract. UM has a high propensity to spread hematogenously to the liver, with up to 50% of patients developing liver metastases. Unfortunately, once liver metastasis occurs, patient prognosis is extremely poor with as few as 8% of patients surviving beyond two years. There are no standard-of-care therapies available for the treatment of metastatic UM, hence it is a clinical area of urgent unmet need. Here, the clinical relevance and therapeutic potential of cysteinyl leukotriene receptors (CysLT1 and CysLT2) in UM was evaluated. High expression of CYSLTR1 or CYSLTR2 transcripts is significantly associated with poor disease-free survival and poor overall survival in UM patients. Digital pathology analysis identified that high expression of CysLT1 in primary UM is associated with reduced disease-specific survival (p = 0.012; HR 2.76; 95% CI 1.21-6.3) and overall survival (p = 0.011; HR 1.46; 95% CI 0.67-3.17). High CysLT1 expression shows a statistically significant (p = 0.041) correlation with ciliary body involvement, a poor prognostic indicator in UM. Small molecule drugs targeting CysLT1 were vastly superior at exerting anti-cancer phenotypes in UM cell lines and zebrafish xenografts than drugs targeting CysLT2. Quininib, a selective CysLT1 antagonist, significantly inhibits survival (p < 0.0001), long-term proliferation (p < 0.0001), and oxidative phosphorylation (p < 0.001), but not glycolysis, in primary and metastatic UM cell lines. Quininib exerts opposing effects on the secretion of inflammatory markers in primary versus metastatic UM cell lines. Quininib significantly downregulated IL-2 and IL-6 in Mel285 cells (p < 0.05) but significantly upregulated IL-10, IL-1ß, IL-2 (p < 0.0001), IL-13, IL-8 (p < 0.001), IL-12p70 and IL-6 (p < 0.05) in OMM2.5 cells. Finally, quininib significantly inhibits tumour growth in orthotopic zebrafish xenograft models of UM. These preclinical data suggest that antagonism of CysLT1, but not CysLT2, may be of therapeutic interest in the treatment of UM.

17.
Proc Natl Acad Sci U S A ; 117(37): 22910-22919, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32859758

ABSTRACT

Lymphocyte-based immunotherapy has emerged as a breakthrough in cancer therapy for both hematologic and solid malignancies. In a subpopulation of cancer patients, this powerful therapeutic modality converts malignancy to clinically manageable disease. However, the T cell- and chimeric antigen receptor T (CAR-T) cell-mediated antimetastatic activity, especially their impacts on microscopic metastatic lesions, has not yet been investigated. Here we report a living zebrafish model that allows us to visualize the metastatic cancer cell killing effect by tumor- infiltrating lymphocytes (TILs) and CAR-T cells in vivo at the single-cell level. In a freshly isolated primary human melanoma, specific TILs effectively eliminated metastatic cancer cells in the living body. This potent metastasis-eradicating effect was validated using a human lymphoma model with CAR-T cells. Furthermore, cancer-associated fibroblasts protected metastatic cancer cells from T cell-mediated killing. Our data provide an in vivo platform to validate antimetastatic effects by human T cell-mediated immunotherapy. This unique technology may serve as a precision medicine platform for assessing anticancer effects of cellular immunotherapy in vivo before administration to human cancer patients.


Subject(s)
Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/metabolism , Single-Cell Analysis/methods , Animals , Cell Line, Tumor , Cytotoxicity, Immunologic/immunology , Immunotherapy, Adoptive/methods , Lymphocyte Activation/physiology , Models, Animal , Neoplasm Metastasis/pathology , Neoplasms/metabolism , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods , Zebrafish
18.
Cancers (Basel) ; 12(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668722

ABSTRACT

Only half of patients with relapsed B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) currently survive with standard treatment protocols. Predicting individual patient responses to defined drugs prior to application would help therapy stratification and could improve survival. With the purpose to aid personalized targeted treatment approaches, we developed a human-zebrafish xenograft (ALL-ZeFiX) assay to predict drug response in a patient in 5 days. Leukemia blast cells were pericardially engrafted into transiently immunosuppressed Danio rerio embryos, and engrafted embryos treated for the test case, venetoclax, before single-cell dissolution for quantitative whole blast cell analysis. Bone marrow blasts from patients with newly diagnosed or relapsed BCP-ALL were successfully expanded in 60% of transplants in immunosuppressed zebrafish embryos. The response of BCP-ALL cell lines to venetoclax in ALL-ZeFiX assays mirrored responses in 2D cultures. Venetoclax produced varied responses in patient-derived BCP-ALL grafts, including two results mirroring treatment responses in two refractory BCP-ALL patients treated with venetoclax. Here we demonstrate proof-of-concept for our 5-day ALL-ZeFiX assay with primary patient blasts and the test case, venetoclax, which after expanded testing for further targeted drugs could support personalized treatment decisions within the clinical time window for decision-making.

19.
Oncotarget ; 11(5): 493-509, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32082484

ABSTRACT

Aberrant ocular angiogenesis can underpin vision loss in leading causes of blindness, including neovascular age-related macular degeneration and proliferative diabetic retinopathy. Current pharmacological interventions require repeated invasive administrations, may lack efficacy and are associated with poor patient compliance and tachyphylaxis. Vitamin D has de novo anti-angiogenic properties. Here, our aim was to validate the ocular anti-angiogenic activity of biologically active vitamin D, calcitriol, and selected vitamin D analogue, 22-oxacalcitriol. Calcitriol induced a significant reduction in ex vivo mouse choroidal fragment sprouting. Viability studies in a human RPE cell line suggested non-calcemic vitamin D analogues including 22-oxacalcitriol have less off-target anti-proliferative activity compared to calcitriol and other analogues. Thereafter, the anti-angiogenic activity of 22-oxacalcitriol was demonstrated in an ex vivo mouse choroidal fragment sprouting assay. In zebrafish larvae, 22-oxacalcitriol was found to be anti-angiogenic, inducing a dose-dependent reduction in choriocapillaris development. Subcutaneously administered calcitriol failed to attenuate mouse retinal vasculature development. However, calcitriol and 22-oxacalcitriol administered intraperitoneally, significantly attenuated lesion volume in the laser-induced choroidal neovascularisation mouse model. In summary, calcitriol and 22-oxacalcitriol attenuate ex vivo and in vivo choroidal vasculature angiogenesis. Therefore, vitamin D may have potential as an interventional treatment for ophthalmic neovascular indications.

20.
Invest Ophthalmol Vis Sci ; 61(2): 39, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32097476

ABSTRACT

Purpose: Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. Methods: Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. Results: Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. Conclusions: Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.


Subject(s)
DNA-Binding Proteins/physiology , Familial Exudative Vitreoretinopathies , Retinal Vessels/pathology , Animals , DNA-Binding Proteins/genetics , Familial Exudative Vitreoretinopathies/genetics , Familial Exudative Vitreoretinopathies/physiopathology , Mutation, Missense , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...