Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(20): 8591-8605, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28937774

ABSTRACT

A class of potent, nonsteroidal, selective indazole ether-based glucocorticoid receptor modulators (SGRMs) was developed for the inhaled treatment of respiratory diseases. Starting from an orally available compound with demonstrated anti-inflammatory activity in rat, a soft-drug strategy was implemented to ensure rapid elimination of drug candidates to minimize systemic GR activation. The first clinical candidate 1b (AZD5423) displayed a potent inhibition of lung edema in a rat model of allergic airway inflammation following dry powder inhalation combined with a moderate systemic GR-effect, assessed as thymic involution. Further optimization of inhaled drug properties provided a second, equally potent, candidate, 15m (AZD7594), that demonstrated an improved therapeutic ratio over the benchmark inhaled corticosteroid 3 (fluticasone propionate) and prolonged the inhibition of lung edema, indicating potential for once-daily treatment.


Subject(s)
Acetamides/therapeutic use , Indazoles/therapeutic use , Pulmonary Edema/drug therapy , Receptors, Glucocorticoid/drug effects , Administration, Inhalation , Aged , Animals , Dose-Response Relationship, Drug , Humans , Mass Spectrometry , Powders , Proton Magnetic Resonance Spectroscopy , Rats
2.
Structure ; 23(12): 2280-2290, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26602186

ABSTRACT

Steroid receptor drugs have been available for more than half a century, but details of the ligand binding mechanism have remained elusive. We solved X-ray structures of the glucocorticoid and mineralocorticoid receptors to identify a conserved plasticity at the helix 6-7 region that extends the ligand binding pocket toward the receptor surface. Since none of the endogenous ligands exploit this region, we hypothesized that it constitutes an integral part of the binding event. Extensive all-atom unbiased ligand exit and entrance simulations corroborate a ligand binding pathway that gives the observed structural plasticity a key functional role. Kinetic measurements reveal that the receptor residence time correlates with structural rearrangements observed in both structures and simulations. Ultimately, our findings reveal why nature has conserved the capacity to open up this region, and highlight how differences in the details of the ligand entry process result in differential evolutionary constraints across the steroid receptors.


Subject(s)
Conserved Sequence , Receptors, Glucocorticoid/chemistry , Receptors, Mineralocorticoid/chemistry , Amino Acid Sequence , Binding Sites , Evolution, Molecular , Humans , Molecular Sequence Data , Protein Binding , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL