Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 52(9): 2745-2755, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31454229

ABSTRACT

Anion exchange membranes (AEMs) based on hydroxide-conducting polymers (HCPs) are a key component for anion-based electrochemical energy technology such as fuel cells, electrolyzers, and advanced batteries. Although these alkaline electrochemical applications offer a promising alternative to acidic proton exchange membrane electrochemical devices, access to alkaline-stable and high-performing polymer electrolyte materials has remained elusive until now. Despite vigorous research of AEM polymer design, literature examples of high-performance polymers with good alkaline stability at an elevated temperature are uncommon. Traditional aromatic polymers used in AEM applications contain a heteroatomic backbone linkage, such as an aryl ether bond, which is prone to degradation via nucleophilic attack by hydroxide ion. In this Account, we highlight some of the progress our group has made in the development of advanced HCPs for applications in AEMs and electrode ionomers. We propose that a synthetic polymer design with an all C-C bond backbone and a flexible chain-tethered quaternary ammonium group provides an effective solution to the problem of alkaline stability. Because of the critical demand for such a polymer system, we have established new synthetic strategies for polymer functionalization and polycondensation using an acid catalyst. The first approach is to graft a cationic tethered alkyl group to pre-existing, commercially available styrene-based block copolymers. The second approach is to synthesize high-molecular-weight aromatic backbone polymers using acid-catalyzed polycondensation of arene monomers and a functionalized trifluoromethyl ketone substrate. Both strategies involve a simple two-step reaction process and avoid the use of expensive metal-based catalysts and toxic chemicals, thereby making the synthetic processes easily scalable to large industrial quantities. Both polymer systems were found to have excellent alkaline stability, confirmed by the preservation of ion exchange capacity and ion conductivity of the membrane after an alkaline test under conditions of 1 M NaOH at 80-95 °C. In addition, the advantage of good solvent processability and convenient scalability of the reaction process generates considerable interest in these polymers as commercial standard AEM candidates. AEM fuel cell and electrolyzer tests of some of the developed polymer membranes showed excellent performance, suggesting that this new class of HCPs opens a new avenue to electrochemical devices with real-world applications.

2.
Plant Dis ; 102(5): 1015-1024, 2018 May.
Article in English | MEDLINE | ID: mdl-30673381

ABSTRACT

Anthracnose is a major disease of persimmon in the pre- and postharvest phase. Several species of Colletotrichum (Colletotrichum gloeosporioides, C. acutatum, and C. horii) have been reported as causal agents of persimmon anthracnose in South Korea. In this study, a collection of 50 isolates associated with persimmon anthracnose were collected from Sangju (n = 25) and Cheongdo-gun (n = 25), South Korea. The morphological characteristics of all 50 Colletotrichum isolates were similar, and it was difficult to identify the isolates to the species level. A subsample of eight isolates was characterized phylogenetically to ascertain species. BLAST search and phylogenetic analysis of the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and actin (ACT) genes revealed two species: C. horii as well as a previously unreported persimmon anthracnose causal agent C. siamense. C. siamense isolates were confirmed again by phylogenetic analysis of the ITS, ACT, GAPDH, calmodulin, and Apn2-Mat1-2 intergenic spacer partial mating type genes. Koch's postulates for C. horii and C. siamense were fulfilled, confirming the pathogenicity of the two species in persimmon fruit. Morphological characteristics (colony morphology and size and shape of conidia and appressoria) from two representative isolates support results of the phylogenetic analysis and match those of previous descriptions of C. horii and C. siamense.


Subject(s)
Colletotrichum/genetics , Colletotrichum/isolation & purification , Diospyros/microbiology , Plant Diseases/microbiology , Fruit/microbiology , Genetic Variation , Phylogeny , Republic of Korea
3.
ACS Chem Biol ; 10(7): 1648-53, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-25946114

ABSTRACT

The biological protein synthesis system has been engineered to incorporate unnatural amino acid into proteins, and this has opened up new routes for engineering proteins with novel compositions. While such systems have been successfully applied in research, there remains a need to develop new approaches with respect to the wider application of unnatural amino acids. In this study, we reported a strategy for incorporating unnatural amino acids into proteins by reassigning one of the Arg sense codons, the AGG codon. Using this method, several unnatural amino acids were quantitatively incorporated into the AGG site. Furthermore, we applied the method to multiple AGG sites, and even to tandem AGG sequences. The method developed and described here could be used for engineering proteins with diverse unnatural amino acids, particularly when employed in combination with other methods.


Subject(s)
Amino Acids/genetics , Codon , Escherichia coli/genetics , Protein Engineering/methods , Amino Acids/chemistry , Base Sequence , Plasmids/genetics , Protein Biosynthesis
4.
Dalton Trans ; 44(24): 11004-12, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25994424

ABSTRACT

The conventional Phillips ethylene trimerization catalyst prepared by reacting Cr(EH)3 (EH = 2-ethylhexanoate), 2,5-dimethylpyrrole (Me2C4H2NH), Et3Al, and Et2AlCl in an aromatic hydrocarbon solvent was improved to obtain a congener composed of a new chromium precursor (EH)2CrOH, (Me2C4H2N)AlEt2, and Et3Al·ClAlEt2. Reaction of CrCl3 with 3 equiv. Na(EH) in water did not generate Cr(EH)3, but unexpectedly produced (EH)2CrOH. In comparison with the erratic catalytic performance of the original Phillips system, due to the ill-defined nature of the Cr(EH)3 source (16 or 6.8 × 10(6) g per mol-Cr h depending on the source), the improved system exhibited consistently high activity (54 × 10(6) g per mol-Cr h). Reaction of (EH)2CrOH with (Me2C4H2N)AlMe2·OEt2 afforded the dimeric Cr(II)-complex (6) coordinated by (η(5)-Me2C4H2N)AlMe2(NC4H2Me2) and µ2-κ(1):η(2)-Me2C4H2N ligands. 6 provided highly active species when activated with Et3Al·ClAlEt2.

5.
Beilstein J Org Chem ; 10: 1787-95, 2014.
Article in English | MEDLINE | ID: mdl-25161738

ABSTRACT

The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05-1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C).

6.
Dalton Trans ; 43(26): 10132-8, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24875269

ABSTRACT

An ansa-zirconocene bearing methyl substituents at all positions adjacent to the bridgehead [(-C(Ph)HC(Ph)H-)(η(5)-2,5-Me2C5H2)2ZrCl2] (4) was prepared in high yields (78%) through the reductive dimerization of 1,4-dimethyl-6-phenylfulvene utilizing ZrCl2·DME generated in situ. The structure of 4 was subsequently confirmed using X-ray crystallography. 4 exhibited excellent catalytic performance with regard to 1-decene oligomerization, which was carried out with the intention of preparing lubricant base stocks. High activities (21 × 10(6) g mol(-1) Zr h(-1) activity; TON = 150 000; TOF = 42 s(-1)) were observed at temperatures as high as 120 °C and the oligomer distribution was appropriate for lubricant application. The simulated distillation (SIMDIS) data confirmed that a wide range of oligomers were formed, ranging from the dimer (2-mer) to 20-mer. A minimal amount of the dimer and oligomers larger than the 10-mer was formed (13 and 25 wt%, respectively). Alternatively, a typical unbridged complex such as (η(5)-nBuC5H4)2ZrCl2 primarily produced dimers (54 wt%), whereas the ansa-zirconocene (EBI)ZrCl2 primarily produced oligomers larger than 10-mer (62 wt%). The methyl substituents at the positions adjacent to the bridgehead in 4 played a significant role in the catalytic performance.

7.
Dalton Trans ; 42(25): 9245-54, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23104466

ABSTRACT

A cobalt(III) complex (1) of a salcy-type ligand tethering 4 quaternary ammonium salts, which is thought to act as a highly active catalyst for CO2/propylene oxide (PO) copolymerization, also shows high activity (TOF, 25,900 h(-1); TON, 518,000; 2.72 kg polymer per g cat) and selectivity (>98%) for CO2/ethylene oxide (EO) copolymerization that results in high-molecular-weight polymers (M(n), 200,000-300,000) that have strictly alternating repeating units. The related cobalt(III) complexes 11-14 were prepared through variations of the ligand framework of 1 by replacing the trans-1,2-diaminocyclohexane unit with 2,2-dimethyl-1,3-propanediamine, trans-1,2-diaminocyclopentane, or 1,1'-binaphthyl-2,2'-diamine or by replacing the aldimine bond with ketimine. These ligand frameworks are thought to favour the formation of the cis-ß configuration in complexation, and the formation of the cis-ß configuration in 11-14 was confirmed through NMR studies or X-ray crystallographic studies of model complexes not bearing the quaternary ammonium salts. Complexes 11, 13, and 14, which adopt the cis-ß configuration even in DMSO did not show any activity for CO2/PO copolymerization. Complex 12, which was constructed with trans-1,2-diaminocyclopentane and fluctuated in DMSO between the coordination and de-coordination of the acetate ligand as observed for 1, showed fairly high activity (TOF, 12,400 h(-1)). This fluctuating behaviour may play a role in polymerization. However, complex 12 did not compete with 1 in terms of activity, selectivity, and the catalyst cost.


Subject(s)
Carbon Dioxide/chemistry , Cobalt/chemistry , Ethylene Oxide/chemistry , Ethylenediamines/chemistry , Organometallic Compounds/chemistry , Quaternary Ammonium Compounds/chemistry , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Polymerization , Salts/chemistry
8.
Dalton Trans ; 41(5): 1444-7, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22159296

ABSTRACT

Contrary to the stereotype, Jacobsen's catalyst, chiral (salcy)Co(III)OAc adopts an unusual binding mode. The tetradentate {ONNO} ligand does not form a square plane but wraps cobalt in a cis-ß fashion while acetate is chelating.

SELECTION OF CITATIONS
SEARCH DETAIL
...