Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Cybern ; 53(3): 1460-1474, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34516383

ABSTRACT

The job-shop scheduling problem (JSSP) is a challenging scheduling and optimization problem in the industry and engineering, which relates to the work efficiency and operational costs of factories. The completion time of all jobs is the most commonly considered optimization objective in the existing work. However, factories focus on both time and cost objectives, including completion time, total tardiness, advance time, production cost, and machine loss. Therefore, this article first time proposes a many-objective JSSP that considers all these five objectives to make the model more practical to reflect the various demands of factories. To optimize these five objectives simultaneously, a novel multiple populations for multiple objectives (MPMO) framework-based genetic algorithm (GA) approach, called MPMOGA, is proposed. First, MPMOGA employs five populations to optimize the five objectives, respectively. Second, to avoid each population only focusing on its corresponding single objective, an archive sharing technique (AST) is proposed to store the elite solutions collected from the five populations so that the populations can obtain optimization information about the other objectives from the archive. This way, MPMOGA can approximate different parts of the entire Pareto front (PF). Third, an archive update strategy (AUS) is proposed to further improve the quality of the solutions in the archive. The test instances in the widely used test sets are adopted to evaluate the performance of MPMOGA. The experimental results show that MPMOGA outperforms the compared state-of-the-art algorithms on most of the test instances.

2.
Sensors (Basel) ; 20(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023955

ABSTRACT

Wireless device-to-device (D2D) caching networks are studied, in which n nodes are distributed uniformly at random over the network area. Each node caches M files from the library of size m ≥ M and independently requires a file from the library. Each request will be served by cooperative D2D transmission from other nodes having the requested file in their cache memories. In many practical sensor or Internet of things (IoT) networks, there may exist simple sensor or IoT devices that are not able to perform real-time rate and power control based on the reported channel quality information (CQI). Hence, it is assumed that each node transmits a file with a fixed rate and power so that an outage is inevitable. To improve the outage-based throughput, a cache-enabled interference cancellation (IC) technique is proposed for cooperative D2D file delivery which first performs IC, utilizing cached files at each node as side information, and then performs successive IC of strongly interfering files. Numerical simulations demonstrate that the proposed scheme significantly improves the overall throughput and, furthermore, such gain is universally achievable for various caching placement strategies such as random caching and probabilistic caching.

SELECTION OF CITATIONS
SEARCH DETAIL
...