Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 29(15): 155203, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29420311

ABSTRACT

The programming characteristics of charge trap flash memory device adopting amorphous In2Ga2ZnO7 (a-IGZO) oxide semiconductors as channel layer were evaluated. Metal-organic chemical vapor deposition (MOCVD) and RF-sputtering processes were used to grow a 45 nm thick a-IGZO layer on a 20 nm thick SiO2 (blocking oxide)/p++-Si (control gate) substrate, where 3 nm thick atomic layer deposited Al2O3 (tunneling oxide) and 5 nm thick low-pressure CVD Si3N4 (charge trap) layers were intervened between the a-IGZO and substrate. Despite the identical stoichiometry and other physicochemical properties of the MOCVD and sputtered a-IGZO, a much faster programming speed of MOCVD a-IGZO was observed. A comparable amount of oxygen vacancies was found in both MOCVD and sputtered a-IGZO, confirmed by x-ray photoelectron spectroscopy and bias-illumination-instability test measurements. Ultraviolet photoelectron spectroscopy analysis revealed a higher Fermi level (E F) of the MOCVD a-IGZO (∼0.3 eV) film than that of the sputtered a-IGZO, which could be ascribed to the higher hydrogen concentration in the MOCVD a-IGZO film. Since the programming in a flash memory device is governed by the tunneling of electrons from the channel to charge trapping layer, the faster programming performance could be the result of a higher E F of MOCVD a-IGZO.

2.
ACS Appl Mater Interfaces ; 10(4): 3810-3821, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29322769

ABSTRACT

p-Type SnO thin films were deposited on a Si substrate by a cosputtering process using ceramic SnO and metal Sn targets at room temperature without adding oxygen. By varying the dc sputtering power applied to the Sn target while maintaining a constant radio frequency power to the SnO target, the Sn/O ratio varied from 56:44 to 74:26 at the as-deposited state. After thermal annealing at 180 °C for 25 min under air atmosphere using a microwave annealing system, the films were crystallized into tetragonal SnO when the Sn/O ratio increased from 44:56 to 57:43. Notably, the metallic Sn remained when the Sn/O ratio was higher than 55:45 at an annealed state. When the ratio was lower than 55:45 at the annealed state, the incorporated Sn fully oxidized to SnO, making the films useful p-type semiconductors, whereas the films became metallic conductors at higher Sn/O ratios. At the Sn/O ratio of 55:45 at the annealed state, the film showed the highest Hall mobility of 8.8 cm2 V-1 s-1 and a hole concentration of 5.4 × 1018 cm-3. Interestingly, the electrical conduction behavior showed trap-mediated hopping when the Sn metal was cosputtered, whereas the single SnO film showed regular band conduction behavior. The residual stress effect could interpret such property variation originated from the sputtering power and postoxidation-induced volumetric effects. This report makes a critical contribution to the in-depth understanding of the composition-structure-property relationship of this technically important thin film material.

3.
J Phys Chem B ; 110(43): 21728-34, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064132

ABSTRACT

We have studied the adsorption and decomposition of thiophene (C4H4S) on Ge(100) using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculation. Analysis of S 2p core-level spectra reveals three adsorption geometries, which we assign to a Ge-S dative bonding state, a [4 + 2] cycloaddition bonding state, and a decomposed bonding state (desulfurization reaction product). Furthermore, we found that the number ratio of the three adsorption geometries depended on the molecular coverage and the annealing temperature. At low coverages, the kinetically favorable dative bonding state is initially formed at room temperature. As the molecular coverage increases, thermodynamically stable [4 + 2] cycloaddition reaction products are additionally produced. In addition, we found that as the surface temperature increased, the [4 + 2] cycloaddition reaction product either possibly desorbed as molecular thiophene or decomposed to form a metallocycle-like species (C4H4Ge2) and a sulfide (Ge2S). We systematically elucidate the changes in the bonding states of adsorbed thiophene on Ge(100) according to the thiophene coverage and annealing temperature.

4.
J Am Chem Soc ; 128(19): 6296-7, 2006 May 17.
Article in English | MEDLINE | ID: mdl-16683776

ABSTRACT

The adsorption of thiophene on Ge(100) has been studied using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculations. Until now, thiophene is known to react with the Ge(100) dimer through a [4 + 2] cycloaddition reaction at room temperature, similar to the case of thiophene on Si(100). However, we found that thiophene has two adsorption geometries on Ge(100) at room temperature, such as a kinetically favorable Ge-S dative bonding configuration and a thermodynamically stable [4 + 2] cycloaddition adduct. Moreover, our STM results show that under 0.25 ML thiophene molecules preferentially produce one-dimensional molecular chain structures on Ge(100) via the Ge-S dative bonding configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...