Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569228

ABSTRACT

We investigated the effects of different types of long-term fermented soybeans (traditionally made doenjang; TMD) on glucose and bone metabolism and memory function in ovariectomized (OVX) rats. The rats were categorized into six groups: Control, cooked unfermented soybeans (CSB), and four TMDs based on Bacillus subtilis (B. subtilis) and biogenic amine contents analyzed previously: high B. subtilis (HS) and high biogenic amines (HA; HSHA), low B. subtilis (LS) and HA (LSHA), HS and low biogenic amines (LA; HSLA), and LS and LA (LSLA). The rats in the CSB and TMD groups fed orally had a 4% high-fat diet for 12 weeks. Rats in the Control (OVX rats) and Normal-control (Sham-operated rats) groups did not consume CSB or TMD, although macronutrient contents were the same in all groups. Uterine weight and serum 17ß-estradiol concentrations were much lower in the Control than the Normal-control group, but CSB and TMD intake did not alter them regardless of B. subtilis and biogenic amine contents. HOMA-IR, a measure of insulin resistance, decreased with TMD with high B. subtilis (HSLA and HSHA) compared to the Control group. In OGTT and IPGTT, serum glucose concentrations at each time point were higher in the Control than in the Normal-control, and HSLA and HSHA lowered them. Memory function was preserved with HSHA and HSLA administration. Bone mineral density decline measured by DEXA analysis was prevented in the HSHA and HSLA groups. Bone metabolism changes were associated with decreased osteoclastic activity, parathyroid hormone levels, and osteoclastic activity-related parameters. Micro-CT results demonstrated that TMD, especially HSLA and HSHA, preserved bone structure in OVX rats. TMD also modulated the fecal bacterial community, increasing Lactobacillus, Ligalactobacillus, and Bacillus. In conclusion, through gut microbiota modulation, TMD, particularly with high B. subtilis content, acts as a synbiotic to benefit glucose, bone, and memory function in OVX rats. Further research is needed to make specific recommendations for B. subtilis-rich TMD for menopausal women.

2.
Front Nutr ; 10: 1122945, 2023.
Article in English | MEDLINE | ID: mdl-36992908

ABSTRACT

Introduction: Jang is a fermented soybean paste containing salt and is traditionally used as a substitute for salt to enhance the flavor of foods in Korea. It has been speculated that regular consumption of Jang may lower the risk of metabolic syndrome (MetS). We hypothesized that Jang intake was associated with the risk of MetS and its components after adjusting for potential confounders, including sodium intake. The hypothesis was investigated according to gender in a large city hospital-based cohort (n = 58,701) in Korea. Methods: Jang intake, calculated as the sum of the intakes of Chungkookjang, Doenjang, Doenjang soup, and Ssamjang (a mixture of Doenjang and Kochujang), was included in the semi-quantitative food frequency questionnaire (SQFFQ) administered to the cohort, and the daily Jang intake was estimated. The participants were categorized into low-Jang and high-Jang groups by 1.9 g daily Jang intake. MetS was defined according to 2005 revised United States National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) criteria modified for Asians. Results: The participants in the low-Jang and high-Jang groups consumed an average of 0.63 g and 4.63 g Jang daily; their total sodium intake was about 1.91 and 2.58 g/day, respectively. The participants in the high-Jang group had higher energy, fiber, calcium, vitamin C, vitamin D, and potassium intake than those in the low-Jang group. After adjusting for covariates, the participants with the highest sodium intake (≥3.31 g/day) were positively associated with MetS risk in the quintiles of men and women. Among the MetS components, waist circumference, fat mass, and hypo-high-density lipoprotein (HDL)-cholesterolemia were positively associated with sodium intake in all participants and women. Unlike the association seen with sodium intake, Jang intake (≥1.9 g/day) was inversely associated with MetS components, including waist circumference, fat mass, serum glucose concentrations, and hypo-HDL-cholesterolemia in all participants and men, after adjusting for covariates including sodium intake. Discussion: Substituting salt for Jang in cooking may be recommended to prevent and alleviate MetS incidence, and its efficacy for MetS risk was better in men than women. The results can be applied to sodium intake in Asian countries where salt is used to promote flavor.

3.
Foods ; 11(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35804768

ABSTRACT

A high salt intake may exacerbate menopausal symptoms and substituting for different types of traditionally made kanjang (TMK; soy sauce) may prevent it. This study examined whether substituting salt with lyophilized TMK containing low and high Bacillus and biogenic amines in a high-fat diet might modulate the menopausal symptoms and the energy, glucose, and lipid metabolism in ovariectomized (OVX) rats. They were categorized into salt (Control), TMK with high Bacillus and low biogenic amines (HBLB), TMK with high Bacillus and high biogenic amines (HBHB), TMK with low Bacillus and low biogenic amines (LBLB), and TMK with low Bacillus and high biogenic amines (LBHB). Sham-operated rats consumed the same diet as the Control. HBLB, HBHB, and LBHB prevented increased tail skin temperature compared to the Control. HBHB and HBLB partially inhibited the increased weight gain and abdominal fat mass by reducing the food efficiency without changing the serum 17ß-estradiol concentrations. Serum glucose and insulin concentrations and the insulin resistance index by the homeostatic model assessment for insulin resistance showed a positive association for weight gain. HBLB and HBHB decreased the serum malondialdehyde and tumor-necrosis factor-α levels. Hepatic triglyceride storage was lower in all TMK groups than in the Control, while hepatic glycogen accumulation was higher in the HBLB, HBHB, and LBHB groups than in the Control and LBLB groups. Accordingly, the mRNA expression of peroxisome proliferator-activated receptors-γ(PPAR-γ) was higher in the HBLB and HBHB groups compared to the Control, and that of fatty acid synthase was opposite to PPAR-γ expression. However, HBLB and HBHB improved dyslipidemia and insulin resistance compared to the Control, but their improvement did not reach that of the Normal-control. The acetic acid concentrations in the portal vein were lower in the LBLB than in the Control, while the butyric acid contents were higher in the LBHB and HBLB groups than in the Control. HBHB, HBLB, and LBHB elevated Akkermansia and Lactobacillus, and HBLB and LBLB increased Bacteroides and Ruminococcus compared to the Control. Polycyclic aromatic hydrocarbon degradation, bile acid synthesis, and unsaturated fatty acid biosynthesis were significantly higher in the HBLB group than in the Control group. In conclusion, substituting salts to TMK with a high Bacillus content regardless of the bioamine contents partially improved the menopausal symptoms and metabolic disturbance in estrogen-deficient animals.

4.
Foods ; 10(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34828975

ABSTRACT

Short-term fermented soybeans (chungkookjang) with specific Bacillus (B.) spp. have anti-obesity, antidiabetic, and anti-stroke functions. We examined the hypothesis that the long-term consumption of B. amyloliquefaciens SCGB 1 fermented (CKJ1) and B. subtilis SCDB 291 (CKJ291) chungkookjang can alleviate clinical symptoms and hyperglycemia after ischemic stroke by promoting the gut microbiota-brain axis. We examined this hypothesis in Mongolian male gerbils with stroke symptoms induced by carotid artery occlusion. The artery-occluded gerbils were divided into five groups: no supplementation (Control, Normal-control), 4% cooked soybeans (CSB), CKJ1, or CKJ291 in a high-fat diet for 3 weeks. The carotid arteries of gerbils in the Control, CSB, CKJ1, and CKJ291 groups were occluded for 8 min and they then continued on their assigned diets for an additional 3 weeks. Normal-control gerbils had no artery occlusion. The diets in all groups contained an identical macronutrient composition using starch, casein, soybean oil, and dietary fiber. The CSB, CKJ1, and CKJ291 groups exhibited less neuronal cell death than the Control group, while the CKJ1 group produced the most significant reduction among all groups, as much as 85% of the Normal-control group. CKJ1 and CKJ291 increased the blood flow and removal of blood clots, as determined by Doppler, more than the Control. They also showed more improvement in neurological disorders from ischemic stroke. Their improvement showed a similar tendency as neuronal cell death. CKJ1 treatment improved memory impairment, measured with Y maze and passive avoidance tests, similar to the Normal-control. The gerbils in the Control group had post-stroke hyperglycemia due to decreased insulin sensitivity and ß-cell function and mass; the CKJ291, CSB, and CKJ1 treatments protected against glucose disturbance after artery occlusion and were similar to the Normal-control. CKJ1 and CKJ291 also reduced serum tumor necrosis factor-α concentrations and hippocampal interleukin-1ß expression levels, compared to the Control. CKJ1 and CKJ291 increased the contents of Lactobacillus, Bacillus, and Akkermansia in the cecum feces, similar to the Normal-control. Picrust2 analysis showed that CKJ1 and CKJ291 increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced the lipopolysaccharide biosynthesis and fatty acid metabolism compared to the Control. In conclusion, daily CKJ1 and CKJ291 intake prevented neuronal cell death and memory dysfunction from the artery occlusion by increasing blood flow and ß-cell survival and reducing post-stroke-hyperglycemia through modulating the gut microbiome composition and metabolites to influence the host metabolism, especially inflammation and insulin resistance, protecting against neuronal cell death and brain dysfunction. CKJ1 had better effects than CKJ291.

5.
J Agric Food Chem ; 68(46): 13168-13178, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-32079403

ABSTRACT

We determined that consuming chungkookjang fermented by Bacillus subtilis (BS) or Bacillus amyloliquefaciens (BA) alleviated hyperglycemia in partially pancreatectomized (Px) rats, an Asian type 2 diabetic (T2D) animal model. Px rats had deteriorated glucose metabolism with decreased glucose-stimulated insulin secretion and insulin sensitivity. Insulin secretion capacity was improved in the ascending order of the Px-control, positive control (3 mg of metformin/kg of body weight), BS (4.5% BS diet), BA (4.5% BA diet), and normal-control (sham-operated rats). BA and BS increased ß-cell mass and decreased malondialdehyde contents and tumor necrosis factor α expression in the islets. BA increased hepatic peroxisome proliferator-activated receptor (PPAR)-α and PPAR-ß similar to the positive control. Bacillales, Lactobacillales, and Verrucomicrobiales (Akkermensia muciniphila) increased and Enterobacteriales decreased in the BA and BS compared to the Px-control. BA prevented the decrease in the villi area and the number of goblet cells in intestinal tissues. In conclusion, BA improved glucose regulation by potentiating insulin secretion and reducing insulin resistance while maintaining gut mucin contents by improving gut microbiota in lean T2D rats.


Subject(s)
Bacillus amyloliquefaciens/metabolism , Diabetes Mellitus, Type 2/diet therapy , Gastrointestinal Microbiome , Glycine max/metabolism , Hypoglycemic Agents/metabolism , Insulin/metabolism , Isoflavones/metabolism , Soybean Proteins/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Fermentation , Humans , Insulin Secretion , Male , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Rats , Rats, Sprague-Dawley , Soy Foods/analysis , Soy Foods/microbiology , Glycine max/microbiology
6.
Food Res Int ; 128: 108769, 2020 02.
Article in English | MEDLINE | ID: mdl-31955739

ABSTRACT

Chungkookjang is a traditional Korean fermented soybean food with anti-diabetic and thrombolytic activity. It may also have anti-stroke activity. We determined that chungkookjang made with Sunchang Research Center for Fermentation Microbes 100730 and 100731 strains of Bacillus amyloliquefaciens(SRCM100730; CKJ730) and SRCM100731(CKJ731) protected against ischemic stroke and post-stroke hyperglycemia in Mongolian gerbils with ischemic stroke induced by transient occlusion of the carotid arteries. Gerbil fed 4.5% cooked soybeans (CSB), CKJ730, CKJ731, or cellulose (negative-control) in 40 energy% fat diets for 3 weeks, and then had artery occlusion for 8 min and continued taking the assigned diet for 5 weeks. CKJ730 and CKJ731 had thrombolytic activity and prevented neuronal cell death. Consequently, they improved short-term memory and spontaneous alteration compared to the negative-control. CKJ730 and CKJ731 improved neurological symptoms including drooped eyes, crouched posture, flexor reflex, and walking patterns the most among the stroke-induced gerbils. CKJ730 and CKJ731 increased active time, grip strength, and blood flow measured by Doppler compared to the negative-control. CKJ730 protected against post-stroke glucose dysregulation by restoring ß-cell mass in the gerbils with transient artery occlusion. Serum tumor necrosis factor-α and interleukin-1ß levels were lower in CKJ730 and CKJ731 than the negative-control. CSB also improved glucose metabolism and suppressed inflammatory cytokines, but less than CKJ730 and CKJ731. Clostridia increased, and Bacteriodia slightly decreased in the negative-control group, compared to the normal-control. CKJ730 and CKJ731 changed the amounts of Bacteriodia and Clostridia to be similar to normal-control. In conclusion, the daily intake of chungkookjang fermented with B. amyloliquefaciens improved the gut microbiome, increased blood flow to the brain, suppressed systemic inflammation, and may reduce the susceptibility to injury from ischemic stroke in gerbils subjected to ischemic injury.


Subject(s)
Hyperglycemia/prevention & control , Isoflavones/pharmacology , Soybean Proteins/pharmacology , Stroke/prevention & control , Animals , Bacillus amyloliquefaciens , Brain Ischemia/prevention & control , Disease Models, Animal , Fermentation , Gerbillinae , Soy Foods
7.
Nutrients ; 10(11)2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30380669

ABSTRACT

We hypothesized that soybeans fermented with Bacillus spp. for 48 h (chungkookjang) would be rich in poly-γ-glutamate (γ-PGA) and would have greater efficacy for improving insulin sensitivity and insulin secretion in 3T3-L1 adipocytes, min6 cells, and PC12 neuronal cells. We screened 20 different strains of B. subtillus and B. amyloliquefaciens spp. for γ-polyglutamate (PGA) production and their anti-diabetic and anti-dementia activities in cell-based studies. Chungkookjang made with two B. amyloliquefaciens spp. (BA730 and BA731) were selected to increase the isoflavonoid and γ-PGA. Insulin-stimulated glucose uptake was higher in 3T3-L1 adipocytes given both chungkookjang extracts than in the cells given vehicle (control). The ethanol extract of BA731 (BA731-E) increased the uptake the most. Triglyceride accumulation decreased in BA731-E and BA731-W and the accumulation increased in BA730-W and BA730-E. The mRNA expression of fatty acid synthetase and acetyl CoA carboxylase was much lower in BA731-E and BA731-W and it was higher in BA730-W than the control. BA730-E and BA730-W also increased peroxisome proliferator-activated receptor (PPAR)-γ activity. Glucose-stimulated insulin secretion increased with the high dosage of BA730-W and BA730-E in insulinoma cells, compared to the control. Insulin contents and cell survival in high glucose media were higher in cells with both BA731-E and BA730-E. Triglyceride deposition and TNF-α mRNA expression were lower in BA731 than the control. The high-dosage treatment of BA730-E and BA731-E increased differentiated neuronal cell survival after treating amyloid-ß(25-35) compared to the control. Brain-derived neurotrophic factor and ciliary neurotrophic factor, indices of neuronal cell proliferation, were higher in BA730 and BA731 than in the control. Tau expression was also reduced in BA731 more than the control and it was a similar level of the normal-control. In conclusion, BA730 increased PPAR-γ activity and BA731 enhanced insulin sensitivity in the brain and periphery. BA730 and BA731 prevented and alleviated the symptoms of type 2 diabetes and Alzheimer's disease with different pathways.


Subject(s)
Adipocytes/metabolism , Insulin Resistance/physiology , Isoflavones/physiology , Neurons/metabolism , Polyglutamic Acid/analogs & derivatives , Soybean Proteins/physiology , 3T3-L1 Cells , Animals , Fermentation , Glucose/metabolism , Humans , Insulin Secretion/physiology , Mice , PC12 Cells , PPAR gamma/metabolism , Polyglutamic Acid/physiology , Rats , Glycine max
SELECTION OF CITATIONS
SEARCH DETAIL
...