Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; : e2401628, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248663

ABSTRACT

Double perovskite (DP) oxides are promising electrode materials for symmetric solid oxide cells (SSOCs) due to their excellent electrochemical activity and stability. B-site cation doping in DP oxides affects the reversibility of phase transformation and exsolution, which plays a crucial role in the catalyst recovery. Yet, few studies have been conducted on this topic. In this study, the Sr2Fe1.5-xCoxMo0.5O6-δ (CSFM, x = 0, 0.1, 0.3, 0.5) DP system demonstrates modulated exsolution and phase transformation reversibility by manipulating the oxygen vacancy concentration. The correlation between Co-doping level and oxygen vacancy concentration is investigated to optimize the exsolution and phase transformation properties. Sr2Fe1.2Co0.3Mo0.5O6-δ (3CSFM) exhibits reversible transformation between DP and Ruddlesden-Popper phases with a high density of exsolved CoFe nanoparticles under redox atmospheres. The quasi-symmetric cell with 3CSFM shows a peak power density of 1.27 W cm-2 at 850 °C in H2 fuel cell mode and a current density of 2.33 A cm-2 at 1.6 V and 800 °C in H2O electrolysis mode. The 3CSFM electrode exhibits robust stability during continuous operation for ≈700 h. These results demonstrate the significant role of B-site doping in designing DP materials capable of dynamic phase transformation in diverse environments.

2.
Nanomicro Lett ; 16(1): 33, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015283

ABSTRACT

Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials. Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process. Their uniformity and stability, resulting from the socketed structure, play a crucial role in the development of novel nanocatalysts. Recently, tremendous research efforts have been dedicated to further controlling exsolution particles. To effectively address exsolution at a more precise level, understanding the underlying mechanism is essential. This review presents a comprehensive overview of the exsolution mechanism, with a focus on its driving force, processes, properties, and synergetic strategies, as well as new pathways for optimizing nanocatalysts in diverse applications.

3.
Adv Mater ; 35(16): e2208984, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36691762

ABSTRACT

In situ exsolution for nanoscale electrode design has attracted considerable attention because of its promising activity and high stability. However, fundamental research on the mechanisms underlying particle growth remains insufficient. Herein, cation-diffusion-determined exsolution is presented using an analytical model based on classical nucleation and diffusion. In the designed perovskite system, the exsolution trend for particle growth is consistent with this diffusion model, which strongly depends on the initial cation concentration and reduction conditions. Based on the experimental and theoretical results, a highly Ni-doped anode and an electrochemical switching technique are employed to promote exsolution and overcome growth limitations. The optimal cell exhibits an outstanding maximum power density of 1.7 W cm-2 at 900 °C and shows no evident degradation when operating at 800 °C for 240 h under wet H2 . This study provides crucial insights into the developing and tuning of heterogeneous catalysts for energy-conversion applications.

4.
ACS Appl Mater Interfaces ; 14(16): 18275-18282, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35385269

ABSTRACT

The gas sensing characteristics of oxide semiconductors can be enhanced by loading noble metal or metal oxide catalysts. The uniform distribution of nanoscale catalysts with high thermal stability over the sensing materials is essential for sensors operating at elevated temperatures. An in situ exsolution process, which can be applied to catalysts, batteries, and sensors, provides a facile synthetic route for developing second-phase nanoparticles with uniform distribution, excellent thermochemical stability, and strong adhesion to the mother phase. In this study, we investigated the effect of Co-exsolved nanoparticles on the gas sensing characteristics of La0.43Ca0.37Co0.06Ti0.94O3-d (LCCoT). The amount and size of the Co-exsolved nanoparticles on the surface of the perovskite mother phase were adjusted depending on the reduction temperature of the exsolution process. The LCCoT with Co-exsolved nanoparticles prepared by reduction at 700 °C exhibited a response (resistance ratio) of 116.3 to 5 ppm ethanol at 350 °C, which was 10-fold higher than the response of a sensor without exsolution. The high gas response was attributed to the catalytic effect promoted by the uniformly distributed Co-exsolved nanoparticles and the formation of p-n junctions on the sensing surface during reduction. Additionally, we demonstrated the catalytic effect of Co-exsolved nanoparticles using a proton transfer reaction-quadrupole mass spectrometer. By controlling the amount and distribution of exsolved nanoparticles on semiconductor chemiresistors, a new pathway for designing high-performance gas sensors with enhanced thermal stability can be achieved.

SELECTION OF CITATIONS
SEARCH DETAIL