Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters











Publication year range
1.
Crit Rev Toxicol ; 53(7): 385-411, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37646804

ABSTRACT

Chemical regulatory authorities around the world require systemic toxicity data from acute exposures via the oral, dermal, and inhalation routes for human health risk assessment. To identify opportunities for regulatory uses of non-animal replacements for these tests, we reviewed acute systemic toxicity testing requirements for jurisdictions that participate in the International Cooperation on Alternative Test Methods (ICATM): Brazil, Canada, China, the European Union, Japan, South Korea, Taiwan, and the USA. The chemical sectors included in our review of each jurisdiction were cosmetics, consumer products, industrial chemicals, pharmaceuticals, medical devices, and pesticides. We found acute systemic toxicity data were most often required for hazard assessment, classification, and labeling, and to a lesser extent quantitative risk assessment. Where animal methods were required, animal reduction methods were typically recommended. For many jurisdictions and chemical sectors, non-animal alternatives are not accepted, but several jurisdictions provide guidance to support the use of test waivers to reduce animal use for specific applications. An understanding of international regulatory requirements for acute systemic toxicity testing will inform ICATM's strategy for the development, acceptance, and implementation of non-animal alternatives to assess the health hazards and risks associated with acute toxicity.

2.
Food Sci Biotechnol ; 31(6): 759-766, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35646417

ABSTRACT

Sub-chronic toxicity studies using rats have been conducted for Cynanchum wilfordii (Maxim.) Hemsley (CW) and Cynanchum auriculatum Royle ex Wight (CA). CW water extract didn't show any adverse effects whereas administering CW powder decreased body weights in complication with decreased food consumptions. In the case of CA water extract, triglyceride and absolute/relative liver weights were elevated and vacuolation was observed in liver. Treated CA powder in male rats increased alanine aminotransferase and aspartate aminotransferase and induced single cell necrosis and multinucleated hepatocyte in liver. As for female rats, increased absolute/relative weights and hypertrophy/vacuolation in adrenal glands and vacuolation in ovaries were observed when administered CA powder. In conclusion, no observed adverse effect level (NOAEL) of CW water extract was over 5000 mg/kg/day, while NOAEL of CW powder was 700 mg/kg/day for female and 150 mg/kg/day for male. In case of CA, NOAEL of water extract was 1500 mg/kg/day for male and 2000 mg/kg/day for female, while NOAEL of powder was 150 mg/kg/day for both gender. To the best of our knowledge, this is the first sub-chronic toxicity study on the adverse effects, target organs and its dose levels of C. wilfordii (Maxim.) Hemsley and C. auriculatum Royle ex Wight following GLP protocols.

3.
Toxics ; 10(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35622649

ABSTRACT

The nano-market has grown rapidly over the past decades and a wide variety of products are now being manufactured, including those for biomedical applications. Despite the widespread use of nanomaterials in various industries, safety and health effects on humans are still controversial, and testing methods for nanotoxicity have not yet been clearly established. Nanomaterials have been reported to interfere with conventional cytotoxicity tests due to their unique properties, such as light absorption or light scattering. In this regard, the colony-forming efficacy (CFE) assay has been suggested as a suitable test method for testing some nanomaterials without these color-interferences. In this study, we selected two types of GNPs (Graphene nanoplatelets) as test nanomaterials and evaluated CFE assay to assess the cytotoxicity of GNPs. Moreover, for further investigation, including expansion into other cell types, GNPs were evaluated by the conventional cytotoxicity tests including the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), Cell Counting Kit-8 (CCK-8), and Neutral red uptake (NRU) assay using MDCK, A549 and HepG2 cells. The results of CFE assay suggest that this test method for three cell lines can be applied for GNPs. In addition, the CFE assay was able to evaluate cytotoxicity regardless more accurately of color interference caused by residual nanomaterials.

4.
Toxics ; 10(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35051066

ABSTRACT

Chlorobutanol (CB) is used as a preservative in cosmetics and has antibacterial activity. This study investigated the single- and repeated-dose 28-day oral toxicity of a CB solvent in Sprague Dawley (SD) rats. For the single-dose oral toxicity study, a dose of 62.5, 125, or 250 mg per kg of body weight (mg/kg b.w.) of CB was given once orally via gavage. For the repeated-dose 28-day toxicity study, the high dose was set as 100 mg/kg b.w./day, and the middle, middle-low, and low doses were set to 50, 25, and 12.5 mg/kg b.w./day, respectively. Body weight was not significantly changed in the repeated-dose toxicity study. Relative liver and kidney weights were significantly increased in both sexes of the 100 mg/kg b.w./day treatment group. However, there were histopathological changes in liver and kidney for females and males, respectively. These data suggested that the approximate lethal dose (ALD) of CB was over 250 mg/kg b.w./day in the single-dose study, and the no adverse effect level (NOAEL) for CB was over 50 and 12.5 mg/kg b.w./day for female and male rats in the repeated-dose toxicity study.

5.
Toxics ; 9(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34941770

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are used in various industries such as food additives, cosmetics, and biomedical applications. In this study, we evaluated lung damage over time by three types of ZnO NPs (L-serine, citrate, and pristine) following the regulation of functional groups after a single intratracheal instillation to rats. The three types of ZnO NPs showed an acute inflammatory reaction with increased LDH and inflammatory cell infiltration in the alveoli 24 h after administration. Especially in treatment with L-serine, citrate ZnO NPs showed higher acute granulocytic inflammation and total protein induction than the pristine ZnO NPs at 24 h. The acute inflammatory reaction of the lungs recovered on day 30 with bronchoalveolar fibrosis. The concentrations of IL-4, 6, TNF-α, and eotaxin in the bronchoalveolar lavage fluid (BALF) decreased over time, and the levels of these inflammation indicators are consistent with the following inflammatory cell data and acute lung inflammation by ZnO NP. This study suggests that single inhalation exposure to functionalized ZnO NPs may cause acute lung injury with granulocytic inflammation. Although it can recover 30 days after exposure, acute pulmonary inflammation in surface functionalization means that additional studies of exposure limits are needed to protect the workers that produce it.

6.
Toxics ; 9(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34941789

ABSTRACT

Polyethylene glycol (PEG) is a polymer used for surface modification of important substances in the modern pharmaceutical industry and biopharmaceutical fields. Despite the many benefits of PEGylation, there is also the possibility that the application and exposure of the substance may cause adverse effects in the body, such as an immune response. Therefore, we aimed to evaluate the sensitization responses that could be induced through the intercomparison of nanomaterials of the PEG-coated group with the original group. We selected gold/silver nanomaterials (NMs) for original group and PEGylated silver/gold NMs in this study. First, we measured the physicochemical properties of the four NMs, such as size and zeta potential under various conditions. Additionally, we performed the test of the NM's sensitization potential using the KeratinoSens™ assay for in vitro test method and the LLNA: 5-bromo-2-deoxyuridine (BrdU)-FCM for in vivo test method. The results showed that PEGylated-NMs did not lead to skin sensitization according to OECD TG 442 (alternative test for skin sensitization). In addition, gold nanomaterial showed that cytotoxicity of PEGylated-AuNMs was lower than AuNMs. These results suggest the possibility that PEG coating does not induce an immune response in the skin tissue and can lower the cytotoxicity of nanomaterials.

7.
Nanomaterials (Basel) ; 11(8)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34443968

ABSTRACT

Nowadays, various industries using nanomaterials are growing rapidly, and in particular, as the commercialization and use of nanomaterials increase in the cosmetic field, the possibility of exposure of nanomaterials to the skin of product producers and consumers is increasing. Due to the unique properties of nanomaterials with a very small size, they can act as hapten and induce immune responses and skin sensitization, so accurate identification of toxicity is required. Therefore, we selected silica nanomaterials used in various fields such as cosmetics and biomaterials and evaluated the skin sensitization potential step-by-step according to in-vitro and in-vivo alternative test methods. KeratinoSensTM cells of modified keratinocyte and THP-1 cells mimicking dendritic-cells were treated with silica nanoparticles, and their potential for skin sensitization and cytotoxicity were evaluated, respectively. We also confirmed the sensitizing ability of silica nanoparticles in the auricle-lymph nodes of BALB/C mice by in-vivo analysis. As a result, silica nanoparticles showed high protein binding and reactive oxygen species (ROS) mediated cytotoxicity, but no significant observation of skin sensitization indicators was observed. Although more studies are needed to elucidate the mechanism of skin sensitization by nanomaterials, the results of this study showed that silica nanoparticles did not induce skin sensitization.

8.
Front Pharmacol ; 12: 690141, 2021.
Article in English | MEDLINE | ID: mdl-34335256

ABSTRACT

Bromochlorophene (BCP) has shown good properties in sterilization and antibacterial activity and is widely used as a household chemical. We evaluated the genotoxicity, single and repeated-dose 28-day oral toxicity, and dermal application of a BCP suspension in Sprague-Dawley (SD) rats. For the single-dose toxicity study, a dose of 25-1,000 mg per kg of bodyweight (mg/kg b.w.) of BCP was given once orally to SD rats. Mortality and clinical signs were observed and recorded for the first 30 min after treatment, at 4 h post-administration, and then at least once daily for 14 days after administration. For the repeated-dose 28-day toxicity study, the high dose was set at 1,000 mg/kg b.w. and the middle, middle-low, and low dose were set to 500, 250, and 125 mg/kg, respectively. Hematology and biochemistry parameters were examined. Gross pathologic and histopathologic examinations were performed on selected tissues from all animals. A bacterial reverse mutation assay, in vitro chromosomal aberration assay, and in vivo micronucleus assay were performed to assess genotoxicity-dermal application exposure assessment of BCP in rats. A high oral approximate lethal dose (ALD) of 1,000 mg/kg was observed in the single-dose toxicity test. During the repeated-dose 28-day time period, most animal deaths after administration occurred during the first 3 weeks. The 1,000 mg/kg b.w. oral dose caused the death of six male rats (6/7) and four female rats (4/7). At 500 mg/kg b.w., the female rats showed mortality (1/7). For the biochemistry assays, cholesterol was increased significantly compared to vehicle in both sexes in the 250 and 500 mg/kg groups. Histopathological changes with treatment-related findings were observed in the pancreas in female rats treated with a high dose of BCP compared with the vehicle group. BCP showed no genotoxic effect. These data suggested that the ALD of BCP, estimated as a non-genotoxic substance, was over 1,000 mg/kg b.w. in the single-dose toxicity study, and the NOAEL of BCP was considered to be 250 mg/kg b.w. for male and female rats after repeated oral administration for 28 days under the present study conditions.

10.
Toxics ; 9(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33803047

ABSTRACT

Graphene nanoplatelets (GNPs) are one of the major types of carbon based nanomaterials that have different industrial and biomedical applications. There is a risk of exposure to GNP material in individuals involved in their large-scale production and in individuals who use products containing GNPs. Determining the exact toxicity of GNP nanomaterials is a very important agenda. This research aimed to evaluate the skin sensitization potentials induced by GNPs using two types of alternative to animal testing. We analyzed the physicochemical characteristics of the test material by selecting a graphene nanomaterial with a nano-size on one side. Thereafter, we evaluated the skin sensitization effect using an in vitro and an in vivo alternative test method, respectively. As a result, we found that GNPs do not induce skin sensitization. In addition, it was observed that the administration of GNPs did not induce cytotoxicity and skin toxicity. This is the first report of skin sensitization as a result of GNPs obtained using alternative test methods. These results suggest that GNP materials do not cause skin sensitization, and these assays may be useful in evaluating the skin sensitization of some nanomaterials.

11.
Front Pharmacol ; 12: 627781, 2021.
Article in English | MEDLINE | ID: mdl-33679407

ABSTRACT

Human skins are exposed to nanomaterials in everyday life from various sources such as nanomaterial-containing cosmetics, air pollutions, and industrial nanomaterials. Nanomaterials comprising metal haptens raises concerns about the skin sensitization to nanomaterials. In this study, we evaluated the skin sensitization of nanomaterials comparing metal haptens in vivo and in vitro. We selected five metal oxide NPs, containing copper oxide, cobalt monoxide, cobalt oxide, nickel oxide, or titanium oxide, and two types of metal chlorides (CoCl2 and CuCl2), to compare the skin sensitization abilities between NPs and the constituent metals. The materials were applied to KeratinoSensTM cells for imitated skin-environment setting, and luciferase induction and cytotoxicity were evaluated at 48 h post-incubation. In addition, the response of metal oxide NPs was confirmed in lymph node of BALB/C mice via an in vivo method. The results showed that CuO and CoO NPs induce a similar pattern of positive luciferase induction and cytotoxicity compared to the respective metal chlorides; Co3O4, NiO, and TiO2 induced no such response. Collectively, the results implied fast-dissolving metal oxide (CuO and CoO) NPs release their metal ion, inducing skin sensitization. However, further investigations are required to elucidate the mechanism underlying NP-induced skin sensitization. Based on ion chelation data, metal ion release was confirmed as the major "factor" for skin sensitization.

12.
Toxicol Res ; 37(1): 59-69, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33489858

ABSTRACT

1-(hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione (MDM hydantoin) is a commonly used antiseptic preservative in cosmetics. However, limited toxicity information data are available for this chemical. The aim of this study was to obtain toxicity data for MDM hydantoin through single- and repeated-dose toxicity studies in Sprague-Dawley (SD) rats. In the single-dose toxicity study, MDM hydantoin was administered once orally to SD rats at four doses (5, 50, 300, and 2000 mg/kg/day). There was no significant difference in mortality, clinical signs, and body weight change for 14 days among the animals treated with the different doses in this study. Hence, the approximate lethal dose of MDM hydantoin was considered higher than 2000 mg/kg/day. Based on the results of the dose-range finding study, a 28-day repeated-dose oral toxicity study was conducted. MDM hydantoin was administered orally to SD rats at doses of 125, 250, 500, and 1000 mg/kg/day throughout an experimental period of 28 days. In the repeated-dose oral toxicity study, the adverse effects caused by MDM hydantoin were not detected in terms of body weight, clinical signs, food and water intake, hematology, organ weights, gross pathology, and histopathology. Therefore, the no-observed-adverse-effect level of MDM hydantoin was considered to be greater than 1000 mg/kg/day.

13.
Toxics ; 8(4)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339241

ABSTRACT

Carbon nanotubes (CNTs) are one of the major types of nanomaterials that have various industrial and biomedical applications. However, there is a risk of accidental exposure to CNTs in individuals involved in their large-scale production and in individuals who use products containing CNTs. This study aimed to evaluate the skin sensitization induced by CNTs using two alternative tests. We selected single-wall carbon nanotubes and multi-walled carbon nanotubes for this study. First, the physiochemical properties of the CNTs were measured, including the morphology, size, and zeta potential, under various conditions. Thereafter, we assessed the sensitization potential of the CNTs using the ARE-Nrf2 Luciferase KeratinoSens™ assay, an in vitro alternative test method. In addition, the CNTs were evaluated for their skin sensitization potential using the LLNA: BrdU-FCM in vivo alternative test method. In this study, we report for the first time the sensitization results of CNTs using the KeratinoSens™ and LLNA: BrdU-FCM test methods in this study. This study found that both CNTs do not induce skin sensitization. These results suggest that the KeratinoSens™ and LLNA: BrdU-FCM assay may be useful as alternative assays for evaluating the potential of some nanomaterials that can induce skin sensitization.

14.
Toxics ; 8(3)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784452

ABSTRACT

The compound 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), a replacement for perfluorooctanesulfonate (PFOS) in the electroplating industry, has been widely detected in numerous environmental matrices, human sera, and organisms. Due to regulations that limit PFOS use, F-53B use is expected to increase. Therefore, in this study, we performed a subchronic oral toxicity study of F-53B in Sprague Dawley (SD) rats. F-53B was administered orally once daily to male and female rats for 28 days at doses of 5, 20, and 100 mg/kg/day. There were no toxicologically significant changes in F-53B-treated rats, except in the thyroid gland. However, F-53B slightly reduced the serum concentrations of thyroid hormones, including triiodothyronine and thyroxine, compared with their concentrations in the vehicle group. F-53B also induced follicular hyperplasia and was associated with increased thyroid hormone biosynthesis-associated protein expression. These results demonstrate that F-53B is a strong regulator of thyroid hormones in SD rats as it disrupts thyroid function. Thus, caution should be exercised in the industrial application of F-53B as an alternative for PFOS.

15.
Toxicol Res ; 34(3): 191-197, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30057693

ABSTRACT

In 2015, a candidate for the second national reference standard (NRS) of Gloydius snake venom was produced to replace the first NRS of Gloydius snake venom. In the present study, the potencies of the candidate were determined by a collaborative study, and the qualification of the candidate was estimated. The potencies of the candidate were determined by measuring the murine lethal titers and lapine hemorrhagic titers of venom against the regional working reference standard (RWRS) for antivenom using the methods described in the previous report for the first NRS of Gloydius snake venom. Three Korean facilities contributed data from a total of 30 independent assays. Subsequently, two foreign national control research laboratories contributed to this collaborative study. The results were calculated using the Reed-Muench method for lethality and determined using a mixed-effects model for hemorrhage. The general common potencies of the lethal and hemorrhagic titers were obtained from the results of the 30 tests performed at three Korean facilities. The results are expressed in micrograms for 1 test dose (TD) with a 95% confidence interval as follows: a lethal titer of 90.13 µg/TD (95% confidence interval = 87.39~92.86 µg) and a hemorrhagic titer of 10.80 µg/TD (95% confidence interval = 10.46~11.14 µg). In addition, the candidate preparation showed good quality evaluation according to the results of the quality estimation of the candidate and is judged to be suitable to serve as the Korean NRS for snake venom. In conclusion, the second NRS of Gloydius snake venom was established in this study and will be used for national quality control, including a national lot release test of Korean antivenom products.

16.
PLoS One ; 12(7): e0181634, 2017.
Article in English | MEDLINE | ID: mdl-28723962

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) have many biomedical applications such as chemotherapy agents, vaccine adjuvants, and biosensors but its hemocompatibility is still poorly understood, especially in the event of direct contact of NPs with blood components. Here, we investigated the impact of size and surface functional groups on the platelet homeostasis. ZnO NPs were synthesized in two different sizes (20 and 100 nm) and with three different functional surface groups (pristine, citrate, and L-serine). ZnO NPs were incubated with plasma collected from healthy rats to evaluate the coagulation time, kinetics of thrombin generation, and profile of levels of coagulation factors in the supernatant and coronated onto the ZnO NPs. Measurements of plasma coagulation time showed that all types of ZnO NPs prolonged both active partial thromboplastin time and prothrombin time in a dose-dependent manner but there was no size- or surface functionalization-specific pattern. The kinetics data of thrombin generation showed that ZnO NPs reduced the thrombin generation potential with functionalization-specificity in the order of pristine > citrate > L-serine but there was no size-specificity. The profile of levels of coagulation factors in the supernatant and coronated onto the ZnO NPs after incubation of platelet-poor plasma with ZnO NPs showed that ZnO NPs reduced the levels of coagulation factors in the supernatant with functionalization-specificity. Interestingly, the pattern of coagulation factors in the supernatant was consistent with the levels of coagulation factors adsorbed onto the NPs, which might imply that ZnO NPs simply adsorb coagulation factors rather than stimulating these factors. The reduced levels of coagulation factors in the supernatant were consistent with the delayed coagulation time and reduced potential for thrombin generation, which imply that the adsorbed coagulation factors are not functional.


Subject(s)
Blood Coagulation/drug effects , Blood Platelets/drug effects , Metal Nanoparticles/administration & dosage , Thrombin/metabolism , Zinc Oxide/adverse effects , Animals , Dose-Response Relationship, Drug , Particle Size , Prothrombin Time , Rats
17.
Arch Toxicol ; 91(2): 667-676, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27129695

ABSTRACT

Graphene, a two-dimensional monocrystalline layer of carbon atoms, has potential in many applications not only in material sciences, but also in the biomedical fields, but there is little information about the role of surface modification on the toxicity of graphene-based nanomaterials. Here, we evaluated the role of surface functionalization of the graphene nanoplatelets (GNPs) on the pulmonary inflammogenicity and translocation into mediastinal lymph nodes using a rat intratracheal instillation model. Six types of GNPs were used: All types of GNPs were based on the pristine GNPs (GNPdot), and different functional groups were conjugated onto them including a COOH (GNPCOOH), COH [Formula: see text], N-H [Formula: see text], F x (GNPF), and N=H [Formula: see text]. All types of GNPs showed very high potential for the generation of reactive oxygen species (ROS) in a dose-dependent manner when measured by a 2'7'-dichlorofluorescin diacetate assay. GNPs were instilled into the lungs of rats at 0.3 and 1 mg/rat for the evaluation of acute (24 h) inflammation and at 3 mg/rat for chronic (1 and 4 weeks) inflammation. At 24 h after instillation, all types of GNPs showed good dose-dependent increases in polymorphonuclear leukocytes with a clear dose-dependency although significant increases compared to vehicle control were found only in positively charged GNPs [Formula: see text]. While the acute inflammation in all treatment groups was returned to control levels at 1 and 4 weeks after instillation, GNPs showed similar patterns of translocation into the mediastinal lymph nodes with a higher degree over time. This study implies that the main factors of GNPs for producing lung inflammation are the potential for ROS generation and surface charge. In addition, functional groups on the GNPs might not play an important role in the extrapulmonary translocation into the mediastinal lymph nodes.


Subject(s)
Graphite/toxicity , Lymph Nodes/drug effects , Nanostructures/chemistry , Nanostructures/toxicity , Pneumonia/chemically induced , Animals , Dose-Response Relationship, Drug , Female , Graphite/chemistry , L-Lactate Dehydrogenase/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Lymph Nodes/pathology , Pneumonia/metabolism , Pneumonia/pathology , Rats, Wistar , Reactive Oxygen Species/metabolism , Surface Properties , Toxicity Tests/methods
18.
Osong Public Health Res Perspect ; 8(6): 389-396, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29354397

ABSTRACT

OBJECTIVES: To circumvent the limitations of the current golden standard method, colony-forming unit (CFU) assay, for viability of Bacille Calmette-Guérin (BCG) vaccines, we developed a new method to rapidly and accurately determine the potency of BCG vaccines. METHODS: Based on flow cytometry (FACS) and fluorescein diacetate (FDA) as the most appropriate fluorescent staining reagent, 17 lots of BCG vaccines for percutaneous administration and 5 lots of BCG vaccines for intradermal administration were analyzed in this study. The percentage of viable cells measured by flow cytometry along with the total number of organisms in BCG vaccines, as determined on a cell counter, was used to quantify the number of viable cells. RESULTS: Pearson correlation coefficients of FACS and CFU assays for percutaneous and intradermal BCG vaccines were 0.6962 and 0.7428, respectively, indicating a high correlation. The coefficient of variation value of the FACS assay was less than 7%, which was 11 times lower than that of the CFU assay. CONCLUSION: This study contributes to the evaluation of new potency test method for FACS-based determination of viable cells in BCG vaccines. Accordingly, quality control of BCG vaccines can be significantly improved.

19.
Nanotoxicology ; 10(10): 1448-1457, 2016 12.
Article in English | MEDLINE | ID: mdl-27560255

ABSTRACT

Although surface area metric was suggested as an appropriate dose metric for acute lung inflammation of NPs, it might not be effective for fast-dissolving NPs because they lose their reactive surface when dissolved in the phagolysosomes. Herein, we evaluated the dose metric for fast-dissolving NPs using a rat intratracheal instillation model. A panel of fast-dissolving NPs (CoO, CuO and ZnO) and their constituent metal ions (CoCl2, CuCl2 and ZnCl2) were compiled and each compound was intratracheally instilled into the lungs of female Wistar rats at the same molar concentrations in the NP doses (40, 100 and 400 µg/rat). The toxicity endpoints including cytological and biochemical data in bronchoalveolar lavage fluid were evaluated at 24 h after instillation. To evaluate the dose metric, each toxicity endpoint was plotted against the instilled dose (mass or surface area) or the equivalent dose (mass or surface area) that was weighted by the ratio of specific dose-generated responses between metal chlorides. Dose-response curves of fast-dissolving NPs about percentage of granulocytes, lactate dehydrogenase levels and total protein levels showed similar pattern but slightly less potential than those of their respective metal chlorides. When each toxicity endpoint was plotted against the equivalent mass dose, three types of NPs showed more overlapping dose-response curves than other dose metrics. In conclusion, this study implies that the equivalent mass dose is an appropriate dose metric for fast-dissolving NPs and the main factor determining the slope of the dose-response curve is the intrinsic toxicity of the their constituent ions.


Subject(s)
Lung/drug effects , Metal Nanoparticles/toxicity , Metals, Heavy/toxicity , Pneumonia/chemically induced , Acute Disease , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Dose-Response Relationship, Drug , Female , Instillation, Drug , Leukocyte Count , Metal Nanoparticles/chemistry , Metals, Heavy/chemistry , Oxides/chemistry , Oxides/toxicity , Particle Size , Pneumonia/immunology , Pneumonia/pathology , Rats , Rats, Wistar , Solubility , Surface Properties , Trachea/drug effects
20.
Part Fibre Toxicol ; 13(1): 30, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27283431

ABSTRACT

BACKGROUND: Instillation of highly soluble nanoparticles (NPs) into the lungs of rodents can cause acute eosinophilia without any previous sensitizations by the role of dissolved ions. However, whether gradually dissolving NPs can cause the same type of eosinophilia remains to be elucidated. We selected nickel oxide (NiO) as a gradually dissolving NP and evaluated the time course pulmonary inflammation pattern as well as its mechanisms. METHODS: NiO NPs were intratracheally instilled into female Wistar rats at various concentrations (50, 100, and 200 cm(2)/rat) and the lung inflammation was evaluated at various time-points (1, 2, 3, and 4 days). As positive controls, NiCl2 and the ovalbumin-induced allergic airway inflammation model was applied. NiCl2 was instilled at 171.1 µg Ni/rat, which is equivalent nickel concentration of 200 cm(2)/rat of NiO NPs. Cytological analysis and biochemical analysis including lactate dehydrogenase (LDH), total protein, and pro-inflammatory cytokines were measured in bronchoalveolar lavage fluid (BALF). The levels of total immunoglobulin E (IgE) and anaphylatoxins (C3a and C5a) were measured in BALF and serum. The levels of eotaxin were measured in the alveolar macrophages and normal lung tissue before and after addition of cell lysis buffer to evaluate whether the direct lysis of cells can release intracellular eotaxin. RESULTS: NiO NPs produced acute neutrophilic inflammation throughout the study. However, eosinophils were recruited at 3 and 4 days post-instillation of NiO NPs and the magnitude and pattern of inflammation was similar with NiCl2 at 24 h post-instillation. The eosinophil recruitment by NiO NPs was not related with either the levels of total IgE or anaphylatoxins. The lysis of alveolar macrophages and normal lung tissue showed high levels of intracellular eotaxin and the levels of LDH showed positive correlation with the levels of eotaxin. CONCLUSIONS: Instillation of NiO NPs produced neutrophilia at 1 and 2 days after instillation, while the mixed type of neutrophilic and eosinophilic inflammation was produced at 3 and 4 days post-instillation, which was consistent with NiCl2. The mechanism of the eosinophilia involves the direct release of intracellular eotaxin due to the rupture of cells by the accumulated solubilized nickel ions in the phagolysosome.


Subject(s)
Chemokines/metabolism , Eosinophils/cytology , Lung/drug effects , Metal Nanoparticles/toxicity , Nickel/chemistry , Animals , Bronchoalveolar Lavage Fluid/cytology , Female , L-Lactate Dehydrogenase/metabolism , Lung/cytology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Metal Nanoparticles/chemistry , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL