Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Type of study
Publication year range
1.
Vaccine ; 42(18): 3756-3767, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38724417

ABSTRACT

A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).


Subject(s)
Antibodies, Viral , Chickens , Ducks , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Newcastle disease virus , Vaccines, Inactivated , Vaccines, Synthetic , Virus Shedding , Animals , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Ducks/virology , Ducks/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Specific Pathogen-Free Organisms , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Newcastle Disease/prevention & control , Newcastle Disease/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
2.
Avian Pathol ; 53(3): 194-198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38288967

ABSTRACT

We report the first North American origin class I avian orthoavulavirus 1 (AOAV-1) isolated from a faecal dropping of wild Eurasian teal (Anas crecca) in South Korea. Whole genome sequencing and comparative phylogenetic analysis revealed that the AOAV-1/Eurasian teal/South Korea/KU1405-3/2017 virus belongs to the sub-genotype 1.2 of class I AOAV-1. Phylogenetic analysis suggested multiple introductions of the North American sub-genotype 1.2 viruses into Asia and its establishment in the wild bird population in East Asia since May 2011. These results provide information on the epidemiology of AOAV-1, particularly the role of migratory wild birds in exchanging viruses between the Eurasian and North American continents. Enhanced genomic surveillance is required to improve our understanding on the evolution and transmission dynamics of AOAV-1 in wild birds.


Subject(s)
Ducks , Influenza in Birds , Animals , Phylogeny , Birds , Animals, Wild/genetics , Newcastle disease virus/genetics , Republic of Korea/epidemiology , Whole Genome Sequencing/veterinary , North America/epidemiology
3.
Front Vet Sci ; 10: 1207289, 2023.
Article in English | MEDLINE | ID: mdl-37546334

ABSTRACT

High pathogenicity avian influenza (HPAI) is a viral disease with devastating consequences for the poultry industry worldwide. Domestic ducks are a major source of HPAI viruses in many Eurasian countries. The infectivity and pathogenicity of HPAI viruses in ducks vary depending on host and viral factors. To assess the factors influencing the infectivity and pathogenicity of HPAI viruses in ducks, we compared the pathobiology of two HPAI viruses (H5N1 clade 2.3.2.1c and H5N6 clade 2.3.4.4e) in 5- and 25-week-old ducks. Both HPAI viruses caused mortality in a dose-dependent manner (104, 106, and 108 EID50) in young ducks. By contrast, adult ducks were infected but exhibited no mortality due to either virus. Viral excretion was higher in young ducks than in adults, regardless of the HPAI strain. These findings demonstrate the age-dependent mortality of clade 2.3.2.1c and clade 2.3.4.4e H5 HPAI viruses in ducks.

4.
Vaccine ; 41(33): 4787-4797, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37355454

ABSTRACT

Coronavirus disease 2019 (Covid-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) became a pandemic, causing significant burden on public health worldwide. Although the timely development and production of mRNA and adenoviral vector vaccines against SARS-CoV-2 have been successful, issues still exist in vaccine platforms for wide use and production. With the potential for proliferative capability and heat stability, the Newcastle disease virus (NDV)-vectored vaccine is a highly economical and conceivable candidate for treating emerging diseases. In this study, a recombinant NDV-vectored vaccine expressing the spike (S) protein of SARS-CoV-2, rK148/beta-S, was developed and evaluated for its efficacy against SARS-CoV-2 in K18-hACE-2 transgenic mice. Intramuscular vaccination with low dose (106.0 EID50) conferred a survival rate of 76 % after lethal challenge of a SARS-CoV-2 beta (B.1.351) variant. When administered with a high dose (107.0 EID50), vaccinated mice exhibited 100 % survival rate and reduced lung viral load against both beta and delta variants (B.1.617.2). Together with the protective immunity, rK148/beta-S is an accessible and cost-effective SARS-CoV-2 vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Mice , Animals , Humans , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines , Newcastle disease virus/genetics , Mice, Transgenic , Viral Vaccines/genetics , Antibodies, Viral , Antibodies, Neutralizing
5.
Vaccines (Basel) ; 9(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34579194

ABSTRACT

The development of COVID-19 vaccines is critical in controlling global health issues under the COVID-19 pandemic. The subunit vaccines are the safest and most widely used vaccine platform and highly effective against a multitude of infectious diseases. An adjuvant is essential for subunit vaccines to enhance the magnitude and durability of immune responses. In this study, we determined whether a combination of toll-like receptor (TLR)1/2 and TLR3 agonists (L-pampo) can be a potent adjuvant for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine. We measured a neutralizing antibody (nAb) and an angiotensin-converting enzyme 2 (ACE2) receptor-blocking antibody against SARS-CoV-2 receptor-binding domain (RBD). We also detected interferon-gamma (IFN-γ) production by using ELISPOT and ELISA assays. By employing a ferret model, we detected nAbs and IFN-γ producing cells and measured viral load in nasal wash after the challenge of SARS-CoV-2. We found that SARS-CoV-2 antigens with L-pampo stimulated robust humoral and cellular immune responses. The efficacy of L-pampo was higher than the other adjuvants. Furthermore, in the ferret model, SARS-CoV-2 antigens with L-pampo elicited nAb response and antigen-specific cellular immune response against SARS-CoV-2, resulting in substantially decreased viral load in their nasal wash. Our study suggests that SARS-CoV-2 antigens formulated with TLR agonists, L-pampo, can be a potent subunit vaccine to promote sufficient protective immunity against SARS-CoV-2.

6.
Viruses ; 13(8)2021 08 20.
Article in English | MEDLINE | ID: mdl-34452517

ABSTRACT

Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, suffer from respiratory and non-respiratory symptoms. Among these symptoms, the loss of smell has attracted considerable attention. The objectives of this study were to determine which cells are infected, what happens in the olfactory system after viral infection, and how these pathologic changes contribute to olfactory loss. For this purpose, Syrian golden hamsters were used. First, we verified the olfactory structures in the nasal cavity of Syrian golden hamsters, namely the main olfactory epithelium, the vomeronasal organ, and their cellular components. Second, we found angiotensin-converting enzyme 2 expression, a receptor protein of SARS-CoV-2, in both structures and infections of supporting, microvillar, and solitary chemosensory cells. Third, we observed pathological changes in the infected epithelium, including reduced thickness of the mucus layer, detached epithelia, indistinct layers of epithelia, infiltration of inflammatory cells, and apoptotic cells in the overall layers. We concluded that a structurally and functionally altered microenvironment influences olfactory function. We observed the regeneration of the damaged epithelium, and found multilayers of basal cells, indicating that they were activated and proliferating to reconstitute the injured epithelium.


Subject(s)
COVID-19/virology , Chemoreceptor Cells/virology , Olfactory Mucosa/virology , SARS-CoV-2 , Vomeronasal Organ/virology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , Chemoreceptor Cells/pathology , Male , Mesocricetus , Nasal Cavity/pathology , Nasal Cavity/virology , Olfactory Mucosa/metabolism , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/metabolism , Olfactory Receptor Neurons/pathology , Olfactory Receptor Neurons/virology , Receptors, Coronavirus/metabolism , Regeneration , SARS-CoV-2/isolation & purification , Vomeronasal Organ/metabolism , Vomeronasal Organ/pathology
7.
Viruses ; 13(6)2021 06 04.
Article in English | MEDLINE | ID: mdl-34199847

ABSTRACT

Since 2014, H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses (HPAIV) have caused outbreaks in wild birds and poultry in multiple continents, including Asia, Europe, Africa, and North America. Wild birds were suspected to be the sources of the local and global spreads of HPAIV. This study evaluated the infectivity, pathogenicity, and transmissibility of clade 2.3.4.4 H5N6 HPAIV in mandarin ducks (Aixgalericulata) and domestic pigeons (Columbia livia domestica). None of the birds used in this study, 20 mandarin ducks or 8 pigeons, showed clinical signs or mortality due to H5N6 HPAI infection. Two genotypes of H5N6 HPAIV showed replication and transmission by direct and indirect contact between mandarin ducks. H5N6 HPAIV replicated and transmitted by direct contact between pigeons, although the viral shedding titer and duration were relatively lower and shorter than those in mandarin ducks. Influenza virus antigen was detected in various internal organs of infected mandarin ducks and pigeons, indicating systemic infection. Therefore, our results indicate mandarin ducks and pigeons can be subclinically infected with clade 2.3.4.4 H5N6 HPAIV and transfer the virus to adjacent birds. The role of mandarin ducks and pigeons in the spread and prevalence of clade 2.3.4.4 H5N6 viruses should be carefully monitored.


Subject(s)
Columbidae/virology , Disease Outbreaks/veterinary , Ducks/virology , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Animals , Animals, Wild/virology , Asymptomatic Infections/epidemiology , Genotype , Influenza A virus/classification , Influenza in Birds/blood , Influenza in Birds/virology , Phylogeny , Poultry/virology , Poultry Diseases/virology , Virus Replication , Virus Shedding
8.
Front Vet Sci ; 8: 773715, 2021.
Article in English | MEDLINE | ID: mdl-35187138

ABSTRACT

The H5 subtype highly pathogenic avian influenza virus (HPAIV) has been introduced to South Korea every 2 or 3 years via wild migratory waterfowls, causing devastating damages to the poultry industry. Although most damages and economic losses by HPAIV are focused on chicken layers, domestic ducks are known to play a major role in the farm-to-farm transmission. However, most HPAIV vaccine studies on poultry have been performed with oil-emulsion inactivated vaccines. In this study, we developed a live recombinant Newcastle disease virus (NDV)-vectored vaccine against H5 HPAIV (rK148/ES2-HA) using a previously established NDV vaccine strain (K148/08) isolated from a wild mallard duck. The efficacy of the vaccine when administered via the oculonasal route or as a spray was evaluated against lethal H5 HPAIV infection in domestic ducks and chickens. Oculonasal inoculation of the rK148/ES2-HA in chickens and ducks elicited antibody titers against HPAIV as early as 1 or 2 week after the single dose of vaccination, whereas spray vaccination in ducks elicited antibodies against HPAIV after the booster vaccination. The chickens and ducks vaccinated with rK148/ES2-HA showed high survival rates and low viral shedding after H5N6 HPAIV challenge. Collectively, vaccination with rK148/ES2-HA prevented lethal infection and decreased viral shedding in both chickens and ducks. The vaccine developed in this study could be useful in suppressing the viral shedding in H5 HPAIV outbreaks, with the ease of vaccine application and fast onset of immunity.

9.
Emerg Microbes Infect ; 9(1): 616-627, 2020.
Article in English | MEDLINE | ID: mdl-32183621

ABSTRACT

Live bird markets (LBMs) in Korea have been recognized as a reservoir, amplifier, and source of avian influenza viruses (AIVs); however, little was known about the role of LBMs in the epidemiology of AIVs in Korea until recently. Through 10 years of surveillance (2006-2016) we have isolated and sequenced H9N2 viruses in Korean LBMs. To understand how H9N2 evolves and spreads in Korea, a statistical Bayesian phylogenetic model was used. Phylogenetic analysis suggests that three separate introductions of progenitor gene pools, Korean domestic duck-origin and two wild aquatic bird-origin AIVs, contributed to the generation of the five genotypes of H9N2 viruses in Korea. Phylogenetic reconstruction of ecological states infer that the LBMs are where chickens become infected with the virus, with domestic ducks playing a major role in the transmission and evolution of the H9N2 viruses. Three increases in the genetic diversity of H9N2 viruses were observed and coincided with transitions in host species and the locations (domestic farm, LBM, slaughterhouse, and wild aquatic bird habitat) where the viruses were isolated, accompanying genetic reassortment. Following the introduction of a wild aquatic bird-origin AIVs in 2008, six genes of the Korean lineage H9N2 virus were replaced with genes originating from wild aquatic birds, and viruses with this new genotype became predominant in Korean LBMs.


Subject(s)
Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Animals , Biodiversity , Birds , Genetic Variation , Genotype , Influenza in Birds/epidemiology , Phylogeny , Republic of Korea
10.
Vaccines (Basel) ; 8(4)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419331

ABSTRACT

Clade 2.3.4.4c H5N6 avian influenza A viruses (AIVs) may have originally adapted to infect chickens and have caused highly pathogenic avian influenza (HPAI) in poultry and human fatalities. Although A/Puerto Rico/8/1934 (H1N1) (PR8)-derived recombinant clade 2.3.4.4c H5N6 vaccine strains have been effective in embryonated chicken eggs-based vaccine production system, they need to be improved in terms of immunogenicity and potential mammalian pathogenicity. We replaced the PB2 gene alone or the PB2 (polymerase basic protein 2), NP (nucleoprotein), M (matrix protein) and NS (non-structural protein) genes together in the PR8 strain with corresponding genes from AIVs with low pathogenicity to remove mammalian pathogenicity and to match CD8+ T cell epitopes with contemporary HPAI viruses, respectively, without loss of viral fitness. Additionally, we tested the effect of the H103Y mutation of hemagglutinin (HA) on antigen productivity, mammalian pathogenicity and heat/acid stability. The replacement of PB2 genes and the H103Y mutation reduced the mammalian pathogenicity but increased the antigen productivity of the recombinant vaccine strains. The H103Y mutation increased heat stability but unexpectedly decreased acid stability, probably resulting in increased activation pH for HA. Interestingly, vaccination with inactivated recombinant virus with replaced NP, M and NS genes halted challenge virus shedding earlier than the recombinant vaccine without internal genes replacement. In conclusion, we successfully generated recombinant clade 2.3.4.4c H5N6 vaccine strains that were less pathogenic to mammals and more productive and heat stable than conventional PR8-derived recombinant strains by optimization of internal genes and the H103Y mutation of HA.

11.
Emerg Infect Dis ; 25(11): 2138-2140, 2019 11.
Article in English | MEDLINE | ID: mdl-31625867

ABSTRACT

An avian influenza A(H6N5) virus with all 8 segments of North American origin was isolated from wild bird feces in South Korea. Phylogenetic analysis suggests that this virus may have been introduced into Asia by wild birds, highlighting the role of wild birds in the dispersal of these viruses.


Subject(s)
Animals, Wild , Birds , Influenza A virus/classification , Influenza A virus/genetics , Influenza in Birds/virology , Influenza, Human/epidemiology , Influenza, Human/virology , Animals , Asia/epidemiology , Genes, Viral , Humans , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza, Human/transmission , North America/epidemiology , Phylogeny
12.
Vaccine ; 37(42): 6154-6161, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31495597

ABSTRACT

The clade 2·3·4·4 H5Nx is a highly pathogenic avian influenza (HPAI) virus, which first appeared in China and has spread worldwide since then, including Korea. It is divided into subclades a - d, but the PR8-derived recombinant clade 2·3·4·4 a viruses replicate inefficiently in embryonated chicken eggs (ECEs). High virus titer in ECEs and no mammalian pathogenicity are the most important prerequisites of efficacious and safer vaccine strains against HPAI. In this study, we have synthesized hemagglutinin (HA) and neuraminidase (NA) genes based on the consensus amino acid sequences of the clade 2·3·4·4a and b H5N8 HPAIVs, using the GISAID database. We generated PR8-derived H5N8 recombinant viruses with single point mutations in HA and NA, which are related to efficient replication in ECEs. The H103Y mutation in HA increased mammalian pathogenicity as well as virus titer in ECEs, by 10-fold. We also successfully eradicated mammalian pathogenicity in H103Y-bearing H5N8 recombinant virus by exchanging PB2 genes of PR8 and 01310 (Korean H9N2 vaccine strain). The final optimized H5N8 vaccine strain completely protected against a heterologous clade 2·3·4·4c H5N6 HPAIV in chickens, and induced hemagglutination inhibition (HI) antibody in ducks. However, the antibody titer of ducks showed age-dependent results. Thus, H103Y and 01310PB2 gene have been successfully applied to generate a highly productive, safe, and efficacious clade 2·3·4·4 H5N8 vaccine strain in ECEs.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N8 Subtype/immunology , Influenza Vaccines/immunology , Influenza in Birds/prevention & control , Neuraminidase/immunology , Vaccines, Synthetic/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Bioengineering , Chick Embryo , Chickens/immunology , Ducks/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/genetics , Influenza in Birds/immunology , Influenza in Birds/virology , Neuraminidase/genetics , Point Mutation/genetics
13.
Virology ; 530: 11-18, 2019 04.
Article in English | MEDLINE | ID: mdl-30753976

ABSTRACT

H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses (HPAIVs) have been disseminated to wide geographic regions since 2014. In 2016, five distinct genotypes (C-1 to C-5) of clade 2.3.4.4c H5N6 HPAIVs were detected in South Korea. In this study, we evaluated the pathogenicity, susceptibility to infection, and transmissibility of the two strains representing the C-1 and C-4 genotypes of the H5N6 viruses, which have different PA and NS gene, in domestic ducks. Although the susceptibility to infection of domestic ducks to the two strains was similar, the C-4 genotype virus induced higher mortality in ducks than C-1 genotype virus. A higher titer of viral shedding were detected in ducks challenged with the C-4 genotype virus compared with the C-1 genotype virus. These results indicated that the reassortment of HPAIVs with prevailing low pathogenic avian influenza viruses could effect on the pathogenicity in ducks.


Subject(s)
Ducks/virology , Influenza A virus/isolation & purification , Influenza A virus/pathogenicity , Influenza in Birds/virology , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Animals , Genetic Variation , Influenza A virus/classification , Influenza A virus/genetics , Influenza in Birds/mortality , Influenza in Birds/transmission , Korea , Survival Analysis , Virus Shedding
14.
Emerg Infect Dis ; 24(10): 1953-1955, 2018 10.
Article in English | MEDLINE | ID: mdl-30226181

ABSTRACT

We isolated new reassortant avian influenza A(H5N6) viruses from feces of wild waterfowl in South Korea during 2017-18. Phylogenetic analysis suggested that reassortment occurred between clade 2.3.4.4b H5N8 and Eurasian low pathogenicity avian influenza viruses circulating in wild birds. Dissemination to South Korea during the 2017 fall migratory season followed.


Subject(s)
Genotype , Influenza A virus/classification , Influenza A virus/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Reassortant Viruses/genetics , Animals , Animals, Wild , Birds/virology , Genes, Viral , History, 21st Century , Influenza in Birds/history , Phylogeny , Republic of Korea/epidemiology , Seasons
15.
Infect Genet Evol ; 61: 127-133, 2018 07.
Article in English | MEDLINE | ID: mdl-29601871

ABSTRACT

In recent years, avian paramyxovirus type 4 (APMV-4) frequently isolated from wild and domestic bird populations particularly waterfowls worldwide. However, molecular characteristics and genetic diversity of APMV-4 are uncertain, owing to the limited availability of sequence information. A total of 11 APMV-4 strains from 9850 fecal, swab, and environmental samples were isolated during the surveillance program in wintering seasons of 2013-2017 in South Korea. We performed genetic characterization and phylogenetic analysis to investigate the genetic diversity and relatedness between isolates from the region. We report high APMV-4 genetic diversity (multiple genotypes and sub-genotypes) among wild bird and poultry populations in Korea and that the potential virus exchange occurs between neighboring countries via wild bird migration. Furthermore, our study results suggest the possibility of transcontinental transmission of APMV-4 between Asia and Europe.


Subject(s)
Avulavirus Infections/virology , Avulavirus/genetics , Birds/virology , Animals , Animals, Wild/virology , Avulavirus/classification , Avulavirus Infections/veterinary , DNA Barcoding, Taxonomic , Genetic Variation/genetics , Phylogeny , Republic of Korea
16.
J Wildl Dis ; 54(2): 342-346, 2018 04.
Article in English | MEDLINE | ID: mdl-29286260

ABSTRACT

Avian paramyxoviruses (APMVs) constitute some of the most globally prevalent avian viruses and are frequently isolated from wild migratory bird species. Using 1,907 fresh fecal samples collected during the 2012 avian influenza surveillance program, we identified two serotypes of APMV: APMV-4 ( n=10) and APMV-8 ( n=1). Sequences for these isolates phylogenetically clustered with Asian APMV-4 and APMV-8 recently isolated from wild birds in Korea, Japan, China, and Kazakhstan. Analysis by DNA barcoding indicated that the Mongolian APMV-4 and APMV-8 strains were isolated from Anseriformes species including Mallards ( Anas platyrhynchos) and Whooper Swans ( Cygnus cygnus). The close genetic relatedness to Asian isolates, and to similar host species, suggested that wild bird species in the Anatidae family might play an important role as a natural reservoir in the spread of APMV-4 and APMV-8. However, we did not find conclusive evidence to support this hypothesis owing to the limited number of strains that could be isolated. Enhanced surveillance of poultry and wild bird populations in Asia is therefore crucial for the understanding of global AMPV transmission, ecology, evolution, and epidemiology.


Subject(s)
Animals, Wild , Anseriformes/virology , Avulavirus Infections/veterinary , Avulavirus/genetics , Animals , Avulavirus/classification , Avulavirus Infections/epidemiology , Avulavirus Infections/virology , Mongolia/epidemiology , Phylogeny
17.
Vet Microbiol ; 203: 95-102, 2017 May.
Article in English | MEDLINE | ID: mdl-28619174

ABSTRACT

Wild birds play a major role in the evolution, maintenance, and dissemination of highly pathogenic avian influenza viruses (HPAIV). Sub-clinical infection with HPAI in resident wild birds could be a source of dissemination of HPAIV and continuous outbreaks. In this study, the pathogenicity and infectivity of two strains of H5N8 clade 2.3.4.4 virus were evaluated in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica). None of the birds experimentally infected with H5N8 viruses showed clinical signs or mortality. The H5N8 viruses efficiently replicated in the virus-inoculated Mandarin ducks and transmitted to co-housed Mandarin ducks. Although relatively high levels of viral shedding were noted in pigeons, viral shedding was not detected in some of the pigeons and the shedding period was relatively short. Furthermore, the infection was not transmitted to co-housed pigeons. Immunohistochemical examination revealed the presence of HPAIV in multiple organs of the infected birds. Histopathological evaluation showed the presence of inflammatory responses primarily in HPAIV-positive organs. Our results indicate that Mandarin ducks and pigeons can be infected with H5N8 HPAIV without exhibiting clinical signs; thus, they may be potential healthy reservoirs of the H5N8 HPAIV.


Subject(s)
Columbidae/virology , Ducks/virology , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Animals , Disease Outbreaks/veterinary , Influenza in Birds/mortality , Influenza in Birds/virology , Virus Shedding
18.
Poult Sci ; 96(9): 3079-3085, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28633491

ABSTRACT

Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site.


Subject(s)
Antibodies, Bacterial/blood , Antibodies, Viral/blood , Ducks/immunology , Influenza Vaccines/immunology , Orthomyxoviridae/immunology , Salmonella Vaccines/immunology , Salmonella typhimurium/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/classification , Age Factors , Animals , Influenza Vaccines/administration & dosage , Salmonella Vaccines/administration & dosage
19.
Genome Announc ; 5(20)2017 May 18.
Article in English | MEDLINE | ID: mdl-28522703

ABSTRACT

We report here the first full-genome sequence of an avian paramyxovirus type 4 (APMV-4) strain isolated from a domestic mallard duck at a live bird market in South Korea. Phylogenetic analyses provide genetic information on a new genetic clade, APMV-4, isolated from a domestic duck and evidence of APMV-4 exchange between poultry and wild birds.

20.
J Wildl Dis ; 53(3): 630-635, 2017 07.
Article in English | MEDLINE | ID: mdl-28323563

ABSTRACT

Asian-lineage H5 highly pathogenic avian influenza viruses (HPAIV) have caused recurrent outbreaks in poultry and wild birds. In January 2014, H5N8 HPAIV caused outbreaks in South Korea and subsequently spread to East Asia, Europe, and North America. We report the isolation of an H5N8 HPAIV strain from wild birds in Seoul, the most-developed city in South Korea. We analyzed the complete genome sequence of this isolate and estimated its origin using a phylogenetic analysis. The Seoul H5N8 isolate clustered phylogenetically with strains isolated from migratory wild birds but was distinct from Korean poultry isolates. This H5N8 virus was likely introduced into the urbanized city by migratory wild birds. Therefore, wild bird habitats in urbanized areas should be carefully monitored for HPAIV.


Subject(s)
Birds/virology , Influenza A virus/pathogenicity , Influenza in Birds , Animals , Animals, Wild , Europe , Influenza A virus/isolation & purification , North America , Phylogeny , Republic of Korea , Seoul
SELECTION OF CITATIONS
SEARCH DETAIL
...