Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Angew Chem Int Ed Engl ; : e202411397, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004761

ABSTRACT

The development of environmentally sustainable processes for polymer recycling is of paramount importance in the polymer industry. In particular, the implementation of chemical recycling for thermoset polymers via covalent adaptable networks (CANs), particularly those based on the dynamic hindered urea bond (HUB), has garnered intensive attention from both the academic and industrial sectors. This interest stems from its straightforward chemical structure and reaction mechanism, which are well-suited for commercial polyurethane and polyurea applications. However, a substantial drawback of these CANs is the requisite use of toxic isocyanate curing agents for their synthesis. Herein, we propose a new HUB synthesis pathway involving thiazolidin-2-one and a hindered amine. This ring-opening reaction facilitates the isocyanate-free formation of a HUB and enables sequential reactions with acrylate and epoxide monomers via thiol-Michael and thiol-epoxy click chemistry. The CANs synthesized using this methodology exhibit superior reprocessability, chemical recyclability, and reutilizability, facilitated by specific catalytic and solvent conditions, through the reversible HUB, thiol-Michael addition, and transesterification processes.

2.
RSC Adv ; 14(15): 10653-10661, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567327

ABSTRACT

Self-reporting systems automatically indicate damaged or corroded surfaces via color changes or fluorescence. In this study, a novel reusable self-reporting system is developed by exploiting the reversibility of a donor-acceptor Stenhouse adduct (DASA). The synthesized DASA precursor exhibits a color change when damaged upon reaction with diethylamine, and returns to its colorless form upon irradiation with visible light. Microcapsules are synthesized with a core comprising styrene and the DASA precursor, along with a shell formed of urea and formaldehyde. The optimal particle size and shell thickness of the microcapsules are 225 µm and 0.17 µm, respectively. The DASA precursor-containing microcapsules are embedded in a PEG gel matrix with secondary amine groups. This coating system, initially colorless, exhibits a color change, becoming pink after being damaged by scratching due to the reaction between the DASA precursor released from ruptured microcapsules with the secondary amine groups of the PEG gel, thus demonstrating self-reporting characteristics. Furthermore, the colored surface is restored to its initial colorless state by irradiation with visible light for 1.5 hours, demonstrating the reusability of the self-reporting system.

3.
Nat Struct Mol Biol ; 31(4): 678-687, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332368

ABSTRACT

Class C G-protein-coupled receptors (GPCRs) are activated through binding of agonists to the large extracellular domain (ECD) followed by rearrangement of the transmembrane domains (TMDs). GPR156, a class C orphan GPCR, is unique because it lacks an ECD and exhibits constitutive activity. Impaired GPR156-Gi signaling contributes to loss of hearing. Here we present the cryo-electron microscopy structures of human GPR156 in the Go-free and Go-coupled states. We found that an endogenous phospholipid molecule is located within each TMD of the GPR156 dimer. Asymmetric binding of Gα to the phospholipid-bound GPR156 dimer restructures the first and second intracellular loops and the carboxy-terminal part of the elongated transmembrane 7 (TM7) without altering dimer conformation. Our findings reveal that GPR156 is a transducer for phospholipid signaling. Constant binding of abundant phospholipid molecules and the G-protein-induced reshaping of the cytoplasmic face provide a basis for the constitutive activation of GPR156.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Cryoelectron Microscopy , Receptors, G-Protein-Coupled/metabolism , GTP-Binding Proteins/metabolism , Phospholipids
4.
RSC Adv ; 14(5): 3560-3566, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38264271

ABSTRACT

Anti-counterfeiting (ACF) technology plays a crucial role in distinguishing genuine products from counterfeits, as well as in identity verification. Moreover, it serves as a protective measure for safeguarding the rights of individuals, companies, and governments. In this study, a high-level ACF technology was developed using a color-conversion system based on the photothermal effect of near-infrared (NIR) wavelengths. Diimonium dye (DID), which is a photothermal dye, was selected because it is an NIR absorbing dye with over 98% transparency in the visible light (vis) region. Due to the photothermal properties of DID, the temperature increased to approximately 65 °C at 1064 nm and 39 °C at 808 nm, respectively. Additionally, we employed a donor-acceptor Stenhouse adduct dye, a thermochromic dye, which exhibits reversible color change due to heat (red color) and light (colorless). Our ACF technology was applied to the brand-protecting fiber utilizing the difference in photothermal temperature according to the NIR wavelength. We successfully implemented anti-counterfeit clothing using alphabet K labels that could distinguish between genuine and counterfeit products by irradiating with specific NIR wavelengths.

5.
ACS Appl Mater Interfaces ; 16(1): 1511-1520, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38129176

ABSTRACT

Given the substantial environmental challenge posed by global plastic waste, recycling technology for thermosetting polymers has become a huge research topic in the polymer industry. Covalent adaptive networks (CANs), which can reversibly dissociate and reconstruct their network structure, represent a key technology for the self-healing, reprocessing, and recycling of thermosetting polymers. In the present study, we introduce a new series of polyurethane CANs whose network structure can dissociate via the self-catalyzed formation of dithiolane from the CANs' polydisulfide linkages when the CANs are treated in N,N-dimethylformamide (DMF) or dimethyl sulfoxide at 60 °C for 1 h. More interestingly, we found that this network dissociation even occurs in tetrahydrofuran-DMF solvent mixtures with low DMF concentrations. This feature enables a reduction in the use of high-boiling, toxic polar aprotic solvents. The dissociated network structure of the CANs was reconstructed under UV light at 365 nm with a high yield via ring-opening polydisulfide linkage formation from dithiolane pendant groups. These CAN films, which were prepared by a sequential organic synthesis and polymerization process, exhibited high thermal stability and good mechanical properties, recyclability, and self-healing performance. When lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt was added to the CAN films, the films exhibited a maximum ion conductivity of 7.48 × 10-4 S cm-1 because of the contribution of the high concentration of the pendant ethylene carbonate group in the CANs. The ion-conducting CAN films also showed excellent recyclability and a self-healing performance.

6.
RSC Adv ; 13(50): 35050-35064, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38046629

ABSTRACT

Recently, there has been a significant increase in academic and industrial interest in self-healing polymers (SHPs) due to their remarkable ability to regenerate scratched surfaces and materials of astronomical significance. Scientists have been inspired by the magical repairing mechanism of the living world. They transformed the fiction of self-healing into reality by designing engrossing polymeric materials that could self-repair mechanical abrasions repeatedly. As a result, the durability of the materials is remarkably improved. Thus, the idea of studying SHPs passively upholds economic and environmental sustainability. However, the critical areas of self-healing (including healing efficiency, healing mechanism, and thermo-mechanical property changes during healing) are under continuous scientific improvisation. This review highlights recent notable advances of SHPs for application in regenerating scratched surfaces with various distinctive underlying mechanisms. The primary focus of the work is aimed at discussing the impact of SHPs on scratch-healing technology. Beyond that, insights regarding scratch testing, methods of investigating polymer surfaces, wound depths, the addition of healing fillers, and the environmental conditions maintained during the healing process are reviewed thoroughly. Finally, broader future perspectives on the challenges and prospects of SHPs in healing surface scratches are discussed.

7.
RSC Adv ; 13(51): 36364-36372, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38099255

ABSTRACT

Using o-imino isourea, three photo- and thermal dual-responsive radical initiators dicyheDCC, CyheDCC, and BnDCC were systematically developed and synthesized. By adding an aromatic ring to the free radical initiators, the ultraviolet-visible absorption was redshifted, and the absorption coefficient was increased. Compared with other initiators, BnphDCC exhibited an exceptional photoinitiation rate under photo-differential scanning calorimetry (DSC) and a high absorption coefficient (ε = 15 420 M-1 cm-1). Therefore, it is an appropriate potential photoinitiator. DicyheDCC, which was composed of a cyclic hydrocarbon, exhibited rapid thermal initiation (Tpeak = 82 °C) during thermal DSC, making it a valuable thermal radical initiator. Because of the low stiffness of the N-O link in radical initiators, density functional theory predicts that the aliphatic ring has a significantly lower enthalpy than the aromatic ring. Moreover, in this study, CyhephDCC and BnphDCC, as dual-responsive radical initiators, indicated the potential for a photo- and heat dual-curing system through the universal free-radical polymerization of acrylates. These significant discoveries may be useful for developing efficient and diversified polymer network systems that require synergistic photo- and thermal effects.

8.
RSC Adv ; 13(44): 31092-31100, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37881755

ABSTRACT

Control of polymer topologies is essential to determine their unique physical properties and potential applications. The polymer topologies can have a critical effect on pigment dispersion owing to their unique architectures; however, studies using polymer topologies on pigment dispersion in aqueous systems are scarce. Thus, this study proposes various topologies of polyether-based waterborne synergists, such as linear, hyperbranched, and branched cyclic structures. Specifically, we applied branched types of polyglycidols (PGs) as a synergist to provide polymer topology-dependent dispersibility for the surface-modification of Red 170 particles through adsorption and steric hindrance. The topology-controlled PG synergists (PGSs) were successfully prepared by post-polymerization modification with phthalimide and benzoyl groups. Particularly, the branched types of PGSs, branched cyclic PGS (bc-PGS), and hyperbranched PGS (hb-PGS) exhibited improved dispersibility through adsorption on top of the pigment, interaction between dispersant (BYK 190) and pigment, and steric effect. Surprisingly, hb-PGS conferred the Red 170 pigment particles with superior storage stability than that of bc-PGS despite their similar structural features. This study suggests the widespread potential application of PGSs as waterborne synergists for various dispersion applications.

10.
Sci Rep ; 13(1): 14242, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648771

ABSTRACT

Oncogenic cell-surface membrane proteins contribute to the phenotypic and functional characteristics of cancer stem cells (CSCs). We employed a proximity-labeling proteomic approach to quantitatively analyze the cell-surface membrane proteins in close proximity to CD147 in CSCs. Furthermore, we compared CSCs to non-CSCs to identify CSC-specific cell-surface membrane proteins that are closely interact with CD147 and revealed that lateral interaction between CD147 and CD276 concealed within the lipid raft microdomain in CSCs, confers resistance to docetaxel, a commonly used chemotherapy agent for various cancer types, including metastatic breast cancer. Moreover, we investigated the clinical relevance of CD147 and CD276 co-expression in HER2+ breast cancer (BC) and triple-negative breast cancer patients who underwent chemotherapy. We observed poor disease-free survival and Overall survival rates in patients of CD147 and CD276 (p = 0.04 and 0.08, respectively). Subsequent immunohistochemical analysis in independent cohorts of HER2+ BC support for the association between co-expression of CD147 and CD276 and a poor response to chemotherapy. Collectively, our study suggests that the lateral interaction between CD147 and its proximal partners, such as CD276, may serve as a poor prognostic factor in BC and a predictive marker for the critical phenotypic determinant of BC stemness.


Subject(s)
Proteome , Triple Negative Breast Neoplasms , Humans , Proteomics , Docetaxel , Membrane Proteins , Transcription Factors , B7 Antigens
11.
Polymers (Basel) ; 15(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514501

ABSTRACT

Polyethersulfone (PES) has outstanding thermal and dimensional stability. It is considered an engineering thermoplastic. However, its high coefficient of thermal expansion (CTE) hinders its use in automobiles, microelectronics, and flexible display areas. To overcome its high coefficient of thermal expansion (CTE), recent studies have focused on reducing its high CTE and improving its mechanical properties by adding nano-sized fillers or materials. The addition of nanofiller or nanofibrils to the PES matrix often has a positive effect on its mechanical and thermal properties, making it a flexible display substrate. To obtain ideal flexible substrates, we prepared polyethersulfone with lignin nanocomposite films to reduce CTE and improve the mechanical and thermal properties of PES by varying the relative ratio of PES in the lignin nanocomposite. In this study, lignin as a biodegradable nanofiller was found to show high thermal, oxidative, and hydrolytic stability with favorable mechanical properties. PES/lignin nanocomposite films were prepared by solution casting according to the content of lignin (0 to 5 wt.%). PES/lignin composite films were subjected to mechanical, thermo-mechanical, optical, and surface analyses. The results showed enhanced thermomechanical and optical properties of PES, with the potential benefits of lignin filler materials realized for the development of thermoplastic polymer blends.

12.
Polymers (Basel) ; 15(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37376263

ABSTRACT

To obtain fully degradable and super-tough poly(lactide-co-glycolide) (PLGA) blends, biodegradable star-shaped PCL-b-PDLA plasticizers were synthesized using natural originated xylitol as initiator. These plasticizers were blended with PLGA to prepare transparent thin films. Effects of added star-shaped PCL-b-PDLA plasticizers on mechanical, morphological, and thermodynamic properties of PLGA/star-shaped PCL-b-PDLA blends were investigated. The stereocomplexation strong cross-linked network between PLLA segment and PDLA segment effectively enhanced interfacial adhesion between star-shaped PCL-b-PDLA plasticizers and PLGA matrix. With only 0.5 wt% addition of star-shaped PCL-b-PDLA (Mn = 5000 g/mol), elongation at break of the PLGA blend reached approximately 248%, without any considerable sacrifice over excellent mechanical strength and modulus of PLGA.

13.
J Med Food ; 26(7): 454-461, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37347980

ABSTRACT

Good immunity is highly valued in modern society. Although yuja's efficacy in immunity enhancement has been elucidated, there have been few studies on its role. In this study, we investigate the immune enhancement activity of yuja juice extracts (YJEs) and yuja concentrate extracts (YCEs). The immunoregulatory potencies of YJE and YCE were examined by determining cell viability and the expression of cytokines and immune-related molecules in RAW264.7 cells and mouse primary splenocytes. YJE and YCE induced the production of inducible nitric oxide synthase and cytokines (IL-10, IL-4, IL-6, and IFN-γ) at 1000 µg/mL concentration in RAW 264.7 cells. In addition, in mice that were orally administered 3000 or 2000 mg/kg concentrations of YJE or YCE, immune-related cytokines in splenocytes were boosted to levels higher than those in control mice. Importantly, no liver toxicity was observed at all doses. Thus, our results suggest that compounds present in YJEs and YCEs represent novel natural immune-modulatory substances.


Subject(s)
Plant Extracts , Spleen , Mice , Animals , RAW 264.7 Cells , Plant Extracts/pharmacology , Nitric Oxide/metabolism , Cytokines/metabolism
14.
Molecules ; 28(9)2023 04 29.
Article in English | MEDLINE | ID: mdl-37175223

ABSTRACT

Wastewater management is of considerable economic and environmental importance for the dyeing industry. Digital textile printing (DTP), which is based on sublimation transfer and does not generate wastewater, is currently being explored as an inkjet-based method of printing colorants onto fabric. It finds wide industrial applications with most poly(ethylene terephthalate) (PET) and nylon fibers. However, for additional industrial applications, it is necessary to use natural fibers, such as cotton. Therefore, to expand the applicability of DTP, it is essential to develop a novel reactive disperse dye that can interact with the fabric. In this study, we introduced a blocked isocyanate functional group into the dye to enhance binding to the fabric. The effect of sublimation transfer on fabrics as a function of temperature was compared using the newly synthesized reactive disperse dyes with different blocking groups based on pyrazole derivatives, such as pyrazole (Py), di-methylpyrazole (DMPy), and di-tert-butylpyrazole (DtBPy). Fabrics coated with the new reactive disperse dyes, including PET, nylon, and cotton, were printed at 190 °C, 200 °C, and 210 °C using thermal transfer equipment. In the case of the synthesized DHP-A dye on cotton at 210 °C, the color strength was 2.1, which was higher than that of commercial dyes and other synthesized dyes, such as DMP-A and DTP-A. The fastness values of the synthesized DHP-A were measured on cotton, and it was found that the washing and light fastness values on cotton are higher than those of commercial dyes. This study confirmed the possibility of introducing isocyanate groups into reactive disperse dyes.

15.
Nurs Open ; 10(9): 5868-5886, 2023 09.
Article in English | MEDLINE | ID: mdl-37254640

ABSTRACT

AIMS: To examine the associations between social processes and mechanisms within the community and risky sexual behaviour (RSB) among adolescents and young adults. DESIGN: Systematic review. METHODS: We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and conducted a literature search in August 2020. From 11,216 identified articles, 605 were for full-text screen. We used 24 articles, 22 after applying inclusion criteria and 2 manually searched relevant articles. RESULTS: Social processes and mechanisms within the community included collective efficiency and social support, community safety and community norm. Collective efficacy and social support and community safety were examined using 10 and 16 studies, respectively. We found that collective efficiency and social support, and community norms partially supported the occurrences of RSB among adolescents and young adults. Community safety displayed inconclusive relationships with RSB. CONCLUSIONS: The findings highlight the importance of social processes and mechanisms within the community in preventing RSB among adolescents and young adults. Community-based programs to improve community efficacy and social support would be effective strategies to reduce such RSB and to promote better reproductive health among adolescents and young adults.


Subject(s)
Risk-Taking , Sexual Behavior , Humans , Adolescent , Young Adult
16.
Cell Death Differ ; 30(6): 1563-1574, 2023 06.
Article in English | MEDLINE | ID: mdl-37081114

ABSTRACT

At the top of the midbrain is the inferior colliculus (IC), which functions as the major hub for processing auditory information. Despite the functional significance of neurons in the IC, our understanding of their formation is limited. In this study, we identify the embryonic patterning gene Dbx1 as a key molecular player that governs genetic programs for IC survival. We find that Dbx1 plays a critical role in preventing apoptotic cell death in postnatal IC by transcriptionally repressing c-Jun and pro-apoptotic BH3 only factors. Furthermore, by employing combined approaches, we uncover that Tcf7l2 functions downstream of Dbx1. Loss of Tcf7l2 function causes IC phenotypes with striking similarity to those of Dbx1 mutant mice, which include defective embryonic maturation and postnatal deletion of the IC. Finally, we demonstrate that the Dbx1-Tcf7l2 cascade functions upstream of Ap-2δ, which is essential for IC development and survival. Together, these results unravel a novel molecular mechanism for IC maintenance, which is indispensable for normal brain development.


Subject(s)
Inferior Colliculi , Mesencephalon , Animals , Mice , Homeodomain Proteins/metabolism , Inferior Colliculi/metabolism , Mesencephalon/metabolism , Neurons/metabolism , Transcription Factor 7-Like 2 Protein/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism
17.
ACS Nano ; 17(5): 4800-4812, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36863001

ABSTRACT

Resonance Raman spectroscopy is an efficient tool for multiplex imaging because of the narrow bandwidth of the electronically enhanced vibrational signals. However, Raman signals are often overwhelmed by concurrent fluorescence. In this study, we synthesized a series of truxene-based conjugated Raman probes to show structure-specific Raman fingerprint patterns with a common 532 nm light source. The subsequent polymer dot (Pdot) formation of the Raman probes efficiently suppressed fluorescence via aggregation-induced quenching and improved the dispersion stability of particles without leakage of Raman probes or particle agglomeration for more than 1 year. Additionally, the Raman signal amplified by electronic resonance and increased probe concentration exhibited over 103 times higher relative Raman intensities versus 5-ethynyl-2'-deoxyuridine, enabling successful Raman imaging. Finally, multiplex Raman mapping was demonstrated with a single 532 nm laser using six Raman-active and biocompatible Pdots as barcodes for live cells. Resonant Raman-active Pdots may suggest a simple, robust, and efficient way for multiplex Raman imaging using a standard Raman spectrometer, suggesting the broad applicability of our strategy.


Subject(s)
Quantum Dots , Quantum Dots/chemistry , Semiconductors , Polymers/chemistry , Light , Fluorescence
18.
ACS Appl Mater Interfaces ; 15(6): 8510-8520, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36722695

ABSTRACT

Recently, self-healing materials have evolved to recover specific functions such as electronic, magnetic, acoustic, structural or hierarchical, and biological properties. In particular, the development of self-healing protection coatings that can be applied to lens components in vision systems such as augmented reality glasses, actuators, and image and time-of-flight sensors has received intensive attention from the industry. In the present study, we designed polythiourethane dynamic networks containing a photothermal N-butyl-substituted diimmonium borate dye to demonstrate their potential applications in self-healing protection coatings for the optical components of vision systems. The optimized self-healing coating exhibited a high transmittance (∼95% in the visible-light region), tunable refractive index (up to 1.6), a moderate Abbe number (∼35), and high surface hardness (>200 MPa). When subjected to near-infrared (NIR) radiation (1064 nm), the surface temperature of the coating increased to 75 °C via the photothermal effect and self-healing of the scratched coatings occurred via a dynamic thiourethane exchange reaction. The coating was applied to a lens protector, and its self-healing performance was demonstrated. The light signal distorted by the scratched surface of the coating was perfectly restored after NIR-induced self-healing. The photoinduced self-healing process can also autonomously occur under sunlight with low energy consumption.

19.
Exp Mol Med ; 55(1): 43-54, 2023 01.
Article in English | MEDLINE | ID: mdl-36596853

ABSTRACT

Glioblastoma multiforme (GBM), the most aggressive and malignant glioma, has a poor prognosis. Although patients with GBM are treated with surgery, chemotherapy, and radiation therapy, GBM is highly resistant to treatment, making it difficult and expensive to treat. In this study, we analyzed the Gene Expression Profiling Interactive Analysis dataset, the Cancer Genome Atlas dataset, and Gene Expression Omnibus array data. ZBTB7A (also called FBI1/POKEMON/LRF) was found to be highly expressed in low-grade glioma but significantly downregulated in patients with GBM. ZBTB7A is a transcription factor that plays an important role in many developmental stages, including cell proliferation. The activation of epithelial-mesenchymal transition (EMT) is a key process in cancer progression and metastasis. Erythrocyte membrane protein band 4.1 like 5 (EPB41L5) is an essential protein for EMT progression and metastasis in various types of cancer. We found that ZBTB7A depletion in U87 cells induced GBM progression and metastasis. Based on RNA sequencing data, ZBTB7A directly binds to the promoter of the EPB41L5 gene, reducing its expression and inhibiting GBM progression. We demonstrated that ZBTB7A dramatically inhibits GBM tumor growth through transcriptional repression of EPB41L5. Thus, both ZBTB7A and EPB41L5 may be potential biomarkers and novel therapeutic targets for GBM treatment. Overall, we discovered the role of a novel tumor suppressor that directly inhibits GBM progression (ZBTB7A) and identified EPB41L5 as a therapeutic target protein for patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Glioblastoma/metabolism , Cell Line, Tumor , Glioma/genetics , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Proliferation/genetics , Membrane Proteins/metabolism
20.
Res Sq ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168227

ABSTRACT

Mounting effective immunity against pathogens and tumors relies on the successful metabolic programming of T cells by extracellular fatty acids1-3. During this process, fatty-acid-binding protein 5 (FABP5) imports lipids that fuel mitochondrial respiration and sustain the bioenergetic requirements of protective CD8+ T cells4,5. Importantly, however, the mechanisms governing this crucial immunometabolic axis remain unexplored. Here we report that the cytoskeletal organizer Transgelin 2 (TAGLN2) is necessary for optimal CD8+ T cell fatty acid uptake, mitochondrial respiration, and anti-cancer function. We found that TAGLN2 interacts with FABP5, enabling the surface localization of this lipid importer on activated CD8+ T cells. Analysis of ovarian cancer specimens revealed that endoplasmic reticulum (ER) stress responses elicited by the tumor microenvironment repress TAGLN2 in infiltrating CD8+ T cells, enforcing their dysfunctional state. Restoring TAGLN2 expression in ER-stressed CD8+ T cells bolstered their lipid uptake, mitochondrial respiration, and cytotoxic capacity. Accordingly, chimeric antigen receptor T cells overexpressing TAGLN2 bypassed the detrimental effects of tumor-induced ER stress and demonstrated superior therapeutic efficacy in mice with metastatic ovarian cancer. Our study unveils the role of cytoskeletal TAGLN2 in T cell lipid metabolism and highlights the potential to enhance cellular immunotherapy in solid malignancies by preserving the TAGLN2-FABP5 axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...