Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Small Methods ; 8(2): e2300245, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37330655

ABSTRACT

Atomically thin 2D transition metal dichalcogenides (TMDs) have recently been spotlighted for next-generation electronic and photoelectric device applications. TMD materials with high carrier mobility have superior electronic properties different from bulk semiconductor materials. 0D quantum dots (QDs) possess the ability to tune their bandgap by composition, diameter, and morphology, which allows for a control of their light absorbance and emission wavelength. However, QDs exhibit a low charge carrier mobility and the presence of surface trap states, making it difficult to apply them to electronic and optoelectronic devices. Accordingly, 0D/2D hybrid structures are considered as functional materials with complementary advantages that may not be realized with a single component. Such advantages allow them to be used as both transport and active layers in next-generation optoelectronic applications such as photodetectors, image sensors, solar cells, and light-emitting diodes. Here, recent discoveries related to multicomponent hybrid materials are highlighted. Research trends in electronic and optoelectronic devices based on hybrid heterogeneous materials are also introduced and the issues to be solved from the perspective of the materials and devices are discussed.

2.
ACS Appl Mater Interfaces ; 15(4): 5432-5438, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36689350

ABSTRACT

We report high-performance 0D-2D hybrid photodetectors integrated with tunable band gap perovskite (CsPbI3, CsXFAX-1PbI3, and FAPbI3) quantum dots and MOCVD-grown bilayer MoS2. In our hybrid structure, the lead halide PQDs can be utilized as an absorbing layer of light of specific wavelengths and transfer the photogenerated carriers to the MoS2 transport layer. With tunable wavelength lead halide PQDs, the 0D-2D hybrid photodetector shows a high responsivity up to 107 AW-1 and high specific detectivity exceeding 1013 Jones due to the difference in the built-in potential between PQDs and multilayer MoS2 layers. This work proposes the possibility of fabricating high-performance photodetectors by hybridizing PQDs of various band gaps with 2D materials.

SELECTION OF CITATIONS
SEARCH DETAIL